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Diplomarbeitsthema

Entwicklung einer plattformunabhéangigen,
echtzeitfahigen COFDM-Modulator-Software

Problemstellung:

Das européische digitale terrestrische Horfunksystem (DAB) benutzt das Multitréiger-
Modulationsverfahren COFDM (coded orthogonal frequency division multiplex).
Die COFDM-Modulation findet dabei direkt am Senderstandort von sogenannten
COFDM-Modulatoren statt. Allerdings ermoglichen neue Technologien mit immer
héheren Integrationsgraden mittlerweile wesentlich kompaktere Konzepte fiir die Im-
plementierung von COFDM-Modulatoren. Die Ergebnisse der Diplomarbeit sollen
als Basis fiir ein zukunftssicheres Konzept fiir eine neue Generation von COFDM-
Modulatoren dienen:

Zielsetzung:

Es soll eine Software fiir einen COFDM-Modulator entwickelt werden. Bei der Struk-
turierung der Software soll darauf geachtet werden, daf sie allgemeinen Anspriichen
von Signalprozessoren wie begrenztem Speicherplatz und Rechenzeitoptimierung ge-
niigen kann. Das bedeutet, es mufs eine Struktur gefunden werden, die hierarchisch
so angelegt ist, dak durch Eingriffe in die Kodierung (prozessorspezifischer Kode,
Assembler) an wenigen Stellen hoher Rechenzeitgewinn erzielt werden kann. Au-
flerdem miissen Algorithmen gefunden werden, die aufgrund ihrer mathematischen
Eigenschaften bereits gilinstige Voraussetzungen fiir eine effiziente Programmierung
mitbringen.

Aufgabenstellung:

e Unter UNIX ist ein Softwaredesign zu erstellen, das von der Zielhardware
und dem Betriebssystem unabhéngig ist. Dabei ist als besonderer Aspekt die
Testbarkeit des Systems zu beachten.

e Es sin beziiglich der Rechenzeit optimierte Algorithmen zu entwickeln.

e Das Design ist in einer Programmiersprache (vorzugsweise C,C++) auf einem
UNIX-System zu implementieren.

e Die Portierbarkeit ist auf einem anderen Zielsystem nachzuweisen (vorzugs-
weise Signalprozessor)

e Anhand von Performance-Untersuchungen ist festzustellen, inwieweit das Sy-
stem Echtzeitanforderungen geniigt. Es sin Vorschliage fiir eine Verbesserung
der Performance zu erarbeiten.



Hiermit erklare ich, dafs ich diese Arbeit selbstdndig angefertigt und keine Hilfs-
mittel als die angegebenen benutzt habe.

Hannover, den 5. Mai 1998
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Abkiirzungsverzeichnis

BCH
CIF
COFDM
CRC
DFT
DSP

ETI

FFT
FI
FIC

FIFO
GNU

GF(q)
MSC
MST
PRBS

Q15
QPSK
RS-Code

TFPR

TII

Fehlerkorrigierender Code nach seinen Entdeckern Bose,
Chaudhuri, Hocquenghem

Common Interleaved Frame: Eine Rahmenstruktur in-
nerhalb des COFDM- Enkoders.

“coded orthogonal frequency division multiplex”: das in
DAB verwendete Modulationsverfahren

“cyclic redundancy check™ Fehlererkennungsverfahren,
das auf zyklischen Codes basiert

diskrete Fouriertransformation

Digitaler Signalprozessor: Microprozessor, der auf hohe
mathematische Verarbeitungsgeschwindigkeit optimiert
ist

Ensemble Transport Interface: Eine Schnittstellenbe-
schreibung fiir die Dateniibertragung zwischen Service-
providern und dem Senderstandort.

“fast fourier transformation™ schnelle Fouriertransfor-
mation

Fraktional Integer: Datenformat zur Darstellung von ge-
brochenen Zahlen mittels Integerzahlen.

Fast Information Channel: Ubertragungskanal innerhalb
des DAB-Multiplex, fiir den eine besondere Kanalkodie-
rung angewendet wird.

“first in, first out”, hier: Dateityp des Betriebssystems
“Gnu’s Not Unix” Name eines US-amerikanischen Pro-
jektes, das ein kostenfreies, UNIX-artiges System ent-
wickelt

Galois Feld mit q Elementen

“main service channel” Datenkanal des ETI-Protokolls
“main stream”: Datenkanal im DAB-Rahmen

“pseudo random binary sequence”: pseudozufillige Bit-
folge mit fester Periode

Zahlendarstellung im Fraktional-Integer-Format mit 15
Bit plus einem Vorzeichenbit

“quad phase shift keying”: Modulation der einzelnen Tra-
ger

Reed-Solomon-Code: Fehlerkorrekturverfahren, das auf
der Mathematik in finiten Feldern basiert
“transmission frame phase referenz” das zweite Symbol
im DAB-Rahmen, welches die Feinsynchronisation er-
moglicht.

“transmitter identifikation information” Symbol, das an-
stelle des Nullsymbols gesendet wird und den Sender
identifiziert.
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1 Einleitung

1.1 Motivation

Im Rahmen der Entwicklung eines Senders nach der Eurekaspezifikation zu digita-
lem Radio, DAB, bei der Robert Bosch Multimedia Systeme Gmbh&CoKg sollte
der bestehende COFDM-Encoder iiberarbeitet werden. Die Griinde dafiir sind ei-
ne weitere Verkleinerung des Sendersystems sowie neue Verfahren bei der digitalen
Vorverzerrung des Signals.

Ziele der erneuten Entwicklung einer Software sind:

1. die Verifikation der bestehenden Systeme und eine Verbesserung hinsichtlich
der Wartbarkeit,

2. eine Grundlage fiir die Entwicklung einer zukiinftigen neuen Hardwaregenera-
tion des COFDM-Modulators zu schaffen,

3. Testumgebung hinsichtlich neuer Algorithmen zu erhalten,

4. eine Testumgebung hinsichtlich der Tauglichkeit einer méglichen Hardware fiir
den COFDM-Modulator zu bekommen.

1.2 Ausgangspunkt der Weiterentwicklung

Die Arbeit fuft auf bereits funktionsfadhigen Losungen fiir einen COFDM-Encoder.
Diese sind jedoch alle unter anderen Gesichtspunkten entwickelt worden. Ziel der
erneuten Aufgabenstellung soll es sein, einen Ausgangspunkt fiir weitere Entwick-
lungen zu bilden, der den Stand der Technik wiederspiegelt.

Zum einen existiert eine Urversion in der Programmiersprache C. Diese basiert je-
doch auf einer vorldufigen Spezifikation des Ubertragungsverfahrens. Die Software
ist deshalb besonders unter den Gesichtspunkten der Erweiterbarkeit entwickelt wor-
den. Seit der Erstellung der Software sind viele Anderungen an dem Ubertragungs-
standard vorgenommen worden. Zweck dieser Software war es, den Aufwand des
Modulationsverfahrens néher zu bestimmen und eine erste fehlerfreie Umsetzung
vorzustellen. Der grofste Unterschied zu der neuen Software ist jedoch die Forderung
nach Echtzeitfadhigkeit und der Anspruch, direkt auf einen beliebigen Prozessor tiber-
tragen werden zu konnen.

Zum anderen exisitiert eine MATLAB-Version des COFDM-Encoders, der weitestge-
hend den EU-Spezifikationen entspricht. Diese dient im wesentlichen als Ausgangs-
punkt fiir die Simulation des gesamten Verfahrens inklusive Ubertragungsstrecke und
Dekoders innerhalb von Matlab sowie fiir die Erzeugung von speziellen Testsignalen
und Mefsreihen. Diese MATLAB-Version ist deutlich langsamer in der Berechnung
und ist nicht effizient auf Hardware zu iibertragen.
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Letztlich existiert ein vollstéandiger Hardwaremodulator, der auf der Basis von 5 Si-
gnalprozessoren arbeitet. Die Software ist fiir jeden Prozessor mit grossem Aufwand
von Hand in Assembler geschrieben und optimiert worden. Dabei wurden vor allem
spezielle Hardwareoptionen ausgenutzt und Fehler in den selbigen umgangen. Die
Software ist damit hochgradig systemspezifisch und nur sehr schwer zu warten. Eine
Ubertragung auf andere Hardware ist unter marktwirtschaftlichen Gesichtspunkten
nicht sinnvoll.

1.3 Aufbau des Textes

Zunichst soll ein Uberblick iiber das Ubertragungsverfahren von DAB gegeben wer-
den. Dabei wird die COFDM-Modulation besonders hervorgehoben. Im Anschlufs
daran werden theoretische Grundlagen erortert, die fiir das Erstellen der Arbeit
herangezogen worden sind. Danach wird eine kurze Analyse des COFDM-Encoders
gegeben, die auch die Basis fiir die Implementierung darstellt. Im Kapitel iiber die
Implementierung werden einige Details aus der Umsetzung des COFDM-Encoders
vorgestellt. Danach werden die Ergebnisse aus der Untersuchung des Systems be-
schrieben. Als letztes findet sich eine kurze Zusammenfassung der Arbeit.
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2 Das Ubertragungsverfahren von DAB

Innerhalb des Projekts Eureka 147 wurde ein System spezifiziert, welches die di-
gitale Ubertragung von Horfunk gestattet. Damit kiimen die Vorteile der digitalen
Ubertragung auch beim Rundfunk zum Zug. Wesentliche Merkmale der Entwicklung
sind:

e die Ubertragung in CD-naher Qualitét. Im spezifizierten Verfahren wird dabei
auf die sogenannte MPEG2-Kodierung der “Motion Picture Experts Group”
zuriickgegriffen, die eine variable Qualitdt bis nahezu CD-Qualitdt bei unter-
schiedlicher Bandbreite ermoglicht,

e die Ubertragung anderer multimedialer Daten, wie zum Beispiel den Horfunk
begleitende Untertitel oder Bilder, Stauwarnungen und Nachrichten,

e der mobile Empfang wird in der Spezifikation des Horfunk erstmals definiert
und bis 200 km/h ausgelegt,

Auf der Seite der Senderbetreiber lassen sich noch weitere Vorteile ansprechen,
wie:

e die Frequenzokonomie. Das verwendete Modulationsverfahren besitzt ein re-
lativ scharf begrenztes Spektrum, dessen Bandbreite durch die Digitaltechnik
sehr effizient genutzt wird. Gleichzeitig wird der Betrieb eines Gleichwellen-
netzes unterstiitzt, so daf Pufferbereiche zwischen zwei benachbarten Sendern
entfallen konnen.

e cin sparsamer Energieverbrauch. Die Techniken der digitalen Fehlerkorrektur-
verfahren erlauben eine geringere Signal zu Rauschleistung.

Dieses System, “Digital Audio Broadcasting” oder auch kurz DAB genannt, be-
nutzt ein breitbandiges Spektrum zur Ubertragung. Dabei werden neben der Modu-
lationsfrequenz eine Vielzahl an Untertragern moduliert. Das Signal wird digital im
Frequenzbereich zusammengesetzt und dann mittels einer Fouriertransformation in
den Zeitbereich transformiert.

Die Kapazitdt von DAB reicht fiir mehr als ein Audioprogramm. Deshalb werden
in einem Multiplex mehrere Horfunkprogramme parallel iibertragen. Die Qualitéat
jedes einzelnen Programms ist dabei individuell bestimmbar. Sie ist, wie auch die
Zusammensetzung des gesamten Programmixes, dynamisch verdnderbar.

2.1 Einbettung des COFDM-Encoders in DAB

Die Audio- und Bilddaten werden vom Tonstudio eines Senders zu einem Service
zusammengesetzt. Da mehrere davon parallel iiber ein DAB-Spektrum ausgestrahlt
werden, werden diese Daten zunéchst bei einem Ensembleprovider gesammelt. Von
dort aus werden sie an die einzelnen Sendestationen iibermittelt. Die Daten werden
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broken Image

Abbildung 1: Allgemeine Struktur fiir ein Gleichfrequenznetzwerk

erst hier kanalkodiert, da dies die Datenrate erheblich vergrofert, was sonst auch
Service- und Ensembletransportnetzwerk belasten wiirde. Die in dieser Arbeit vor-
gestellte Losung fiir den COFDM-Enkoder beinhaltet auch die Anpassung an ein
spezifiziertes Ensembletransportnetzwerk. Dazu gehéren CRC’s und RS-Code.

2.2 Aufbau des COFDM-Encoders

Das COFDM-Signal ist von einer Rahmenstruktur gepragt. Dabei werden zunéchst
ein Nullsymbol zur Grobsynchronisation und anschliefend ein Phasenreferenzsym-
bol zur Feinsynchronisation versendet. Danach folgt eine definierte Zahl an Daten-
symbolen. Der realisierte COFDM-Encoder erzeugt dabei das zeitdiskrete komplexe
Basisbandsignal. Der genaue Aufbau des Signals ist in [1] spezifiziert.

! | Netzwerk- Kanal-
! 1 | adaption kOdler”g
| ! COFDM
|
Netzwerk- | Transport i
adaption ! netzwerk !
! |
i Netzwerk- Kanal
adaption kodlerung
COFDM

Abbildung 2: Blockschaltbild des COFDM-Encoders

Ensemble-
multiplexer

Service-
komponenten
Audio/Daten
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2.2.1 PRBS

Die Daten der einzelnen Kanéle werden vor der Kanalkodierung zu einer pseudozu-
falligen Bitfolge addiert. Dadurch sollen Periodizitdten der Eingangsfolge reduziert
werden. Das resultierende Signal besitzt eine gleichméfigere Energieverteilung iiber
das Spektrum.

2.2.2 Kanalkodierung

Die Kanalkodierung fiigt den Daten den fiir den Transport iiber einen fehlerbehaf-
teten Kanal notwendigen Fehlerschutz an. Da es sich bei der terrestrischen Uber-
tragung um eine unidirektionale Verbindung handelt, wird dem Signal eine hohe
Redundanz hinzugefiigt. Die Redundanz wird von einem Faltungskodierer erzeugt.
Um die Koderate variieren zu kénnen, werden im Anschlufs bestimmte Bits aus dem
Datenstrom wieder geloscht. Diesen Vorgang nennt man Punktieren. Die Koderate
reicht bei dem verwendeten Verfahren von S bis i.

2.2.3 Zeitinterleaver

Um den Einflult von Biindelfehlern auf den Kanal zu mindern, findet eine Kode-
spreizung der Daten statt. Die Daten werden dabei gleichméfig auf 16 DAB-Rahmen
aufgeteilt. Die Daten miissen dabei {iber diesen Zeitraum zwischengespeichert wer-
den.

2.2.4 Frequenzinterleaver

Da das Signal bei der Ubertragung frequenzselektiven Stérungen unterworfen ist,
werden zusammenhédngende Daten innerhalb eines Symbols {iber das gesammte
Spektrum gestreut. Auch hierdurch soll das Entstehen von Biindelfehlern verhin-
dert werden.

2.2.5 QPSK-Mapper

Die einzelnen Tréger des Signals werden im Frequenzbereich moduliert. Dabei wird
jedem Tréger eine von 4 Phasen zugeordnet.

2.2.6 Differentielle Modulation

Es wird nicht die Phase der Tréger direkt, sondern die Differenz zum jeweils voran-
gegangenen Symbol iibertragen. Der differentiell modulierte Trager besitzt nun eine
von 8 Phasen. Die maximale Phasendifferenz des Tragers in zwei aufeinanderfolgen-
den Symbolen ist damit nicht 7 sondern %7‘(‘.

2.2.7 OFDM-Generator

Um das Symbol vom Frequenzbereich in den Zeitbereich zu transformieren, wird
eine inverse Fouriertransformation angewendet. Anschliefsend wird das Symbol noch
um ein Schutzintervall verlangert.
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3 Theoretische Grundlagen

3.1 DFT

Hier soll eine kurze Einfiihrung in die Berechnung der Fouriertransformation mittels
eines Computers gegeben werden. Es soll dabei zunéchst auf die Punkte eingegan-
gen werden, die fiir eine korrekte Interpretation notwendig sind. In den folgenden
Abschnitten werden Moglichkeiten zur Beschleunigung des Algorithmusses ange-
sprochen. Als letztes kommen Uberlegungen zur Genauigkeit der Berechnung bei
endlicher Registerbreite hinzu.

Die Berechnung einer diskreten Fouriertransformation setzt zunéchst ein paar Ver-
einbarungen fiir die Interpretation der Ergebnisse voraus. Die Fouriertransformation
ist zunéchst definiert als

o0
Fa)= [ (7)), )
Dieses Integral 1aft sich auf Grund der Grenzen von —oco bis 400 nicht numerisch
16sen. Zunéchst mufs eine diskrete Entsprechung fiir die obige Gleichung gefunden
werden. Es lafst sich zeigen, daf einem periodischen Zeitsignal eine Folge von Del-
taimpulsen im Frequenzbereich entspricht. Ebenso 14t sich zeigen, daf einem im
Frequenzbereich periodischen Signal eine Folge von Deltaimpulsen im Zeitbereich
entspricht. Nimmt man beide Beobachtungen zusammen, 14ft sich zu einem periodi-
schen diskreten Signal im Zeitbereich ein periodisches diskretes Spektrum zuordnen.
Die Berechnung der diskreten Fouriertransformation ist mit

1 N
. ek
X(n) = 7o 2 (k) e, ¢l
k=1
und ihre Inverse mit v
1 ook
2(n) = = - > X (k) eV (3)
k=1

gegeben. Bei der Grofe der Vorfaktoren 1/7'1 und 1/7°2 herrscht Uneindeutigkeit.
Soll die Amplitude der analogen Fouriertransformation angendhert werden, wird
iiblicherweise 71 zu 1 und 72 zu N gesetzt. Um jedoch das Parsevalsche Theo-
rem iiber die Energieerhaltung in Frequenz und Zeitdarstellung einzuhalten, mufs
TL =1T2 = \/—lﬁ gelten. Bei der im COFDM-Modulator verwendeten IFFT geht
es insgesamt nur um die relativen Betrdge der Samples zueinander, da das Signal
spater noch verstirkt wird. Wichtig ist nur die Angabe der Maximalamplituden des
Ausgangssignals, um die nachfolgenden Stufen korrekt auszusteuern.

In der Praxis geht es meistens darum, mit der diskreten Fouriertransformation ein
reales Signal anzundhern. Um vom realen Signal mittels der DF'T zum realen Spek-
trum zu kommen, muft das Eingangssignal diskretisiert, also abgetastet werden.
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Eine eindeutige Abbildung ist hierbei nach Shannons Abtasttheorem nur bei band-
begrenzten Signalen moglich. Um die DFT anwenden zu diirfen, mufs das erhaltene
Signal periodisch angenommen werden. Um mit dem Ergebnis der DFT Aussagen
iiber das reale System machen zu kénnen, behilft man sich mit einem weiteren Trick.
Da das reale Signal nicht periodisch ist, nimmt man an, es wére ein Ausschnitt ei-
ner Periode davon. Das entspricht einer Multiplikation der periodischen Funktion
mit einem Rechtecksignal. Es 1afit sich zeigen, daf eine Multiplikation im Zeitbe-
reich einer Faltung im Frequenzbereich entspricht. Die Fouriertransformierte eines
Rechtecks ist die SI-Funktion sin(z)/x. Ersetzt man also im Frequenzbereich jeden
Delta-Impuls durch eine SI-Funktion, erhédlt man ein Bild des realen Spektrums.

3.2 FFT-Algorithmus

Die grundlegende Idee dabei ist, die Summe in zunéchst zwei Teile zu zerlegen. Das
setzt voraus, dak N selber teilbar ist. Allgemein lafst sich eine Fouriertransformation
um so schneller berechnen, je hochgradiger die Zahl N teilbar ist. Gehen wir zunéchst
von einer Teilbarkeit durch zwei aus. Die Summe zerféllt dabei in zwei Teile, einen
von 1 bis 2, und einen von 1 bis N/2:

N=2-R;, R=N/2; n=(2-n1+ng); k= (R-k + ko);

1 N/2
(2 4ng)(2: )
X(2 sy + nO) — Z Z l‘(2 . k?l + k?o) . 6(_]“}M).
k1=0 ko=0
Substitulert man nun
W = 6(—J’W%)

und trennt den Term €0 erhilt man

1 NJ2
X(2 “ny + nO) — Z Z {L‘(Z cky + kO) . WnﬂmR . Wnokl.Q . Wnoko'

k1=0 ko=0

Der fehlende Term W28k pnimmt wegen N = 2R immer den Wert 1 an und ist
deshalb gleich weggelassen worden. Der Faktor W™ ® nimmt immer nur die Werte
1 oder —1 an.

Diese Summe léfst sich nun in zwei Schritte aufteilen, die nacheinander berech-
net werden koénnen. Der Faktor W™k kann dabei wahlweise dem ersten oder dem
zweiten Schritt zugeordnet werden oder als unabhéngiger Zwischenschritt ausgefiihrt
werden. Im letzten Fall spricht man vom sogenannten Twiddle-Schritt und von W/ "0ko
als sogenanntem Twiddle-Faktor. Es fallt dabei auf, dafs die Reihenfolge der Ergeb-
nisse nicht mehr stimmt. Um eine lineare Beziehung wieder herzustellen, miissen die
Ergebnisse umgeordnet werden. Ist dieses ein separater Berechnungsschritt, spricht
man vom FFT-Reversal. Da die Ergebnisse im Frequenzbereich umgeordnet werden
miissen, spricht man auch von “decimation in frequency”-Algorithmen.
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Erster Berechnungsschritt:

N/2
w1(2 no+ ko) = Y (2 ky + ko) - WN/Znoks L yymoko
ko=0

Zweiter Berechnungsschritt:

1
x9(2 - ng + ko) = Z 21(2 - no + ko) - Wntko2

k1=0

Reversal:

X(2-n1 +ng) =x2(2- 19 +n1)

Nach dem gleichen Prinzip lafst sich die innere Summe erneut unterteilen, wenn
auch N/2 sich in weitere Faktoren zerlegen laft. Kann man N als Potenz von
2 mit N = 29 darstellen, erhalten wir durch fortgesetztes Teilen durch zwei den
sogenannten Radix-2 oder Basis-2 Algorithmus, der nach seinen Entdeckern auch
Cooley-Tukey-Algorithmus genannt wird. Bei der weiteren Zerlegung wird aus dem
Faktor W"%02 in den anschliefend aufeinanderfolgenden Schritten jeweils ein Fak-
tor, der ebenfalls immer nur die Werte 1 und —1 annimmt. Multiplikationen finden
bei diesem Algorithmus nur mit den Twiddle-Faktoren statt. Alle Stufen kénnen
sequentiell nacheinander berechnet werden. Die Berechnung kann dabei “in-place”
geschehen, was bedeutet, daf die jeweils nichste Stufe die Ergebnisse der vorherigen
iiberschreibt. Dadurch wird kein zusétzlicher Speicher fiir die Berechnung benétigt.
Es laft sich auch zeigen, dafs die Reihenfolge der Stufen unter Beriicksichtigung an-
derer Twiddle-Faktoren umgekehrt werden kann. Dies fiihrt zu einem “decimation
in frequency”™Algorithmus. Zu beachten ist, dafs der Algorithmus nur fiir Eingangs-
daten mit N als Zweierpotenz angewendet werden kann.

Der Radix-2 Algorithmus besitzt logs(n) Stufen und lauft also in einer Zeit pro-
portional zu N -logs(N) ab. Der Algorithmus ist hinsichtlich der Additionen optimal.
Ein besseres Verfahren zum Aufaddieren von N - N unabhéngigen Werten als ein
logarithmisches gibt es nicht. Bei der Zahl der Multiplikationen l&ft sich jedoch
noch einiges verbessern. Fiir eine 2048 Punkte FFT finden namlich viele der Multi-
plikationen mit den Faktoren W~ W2 und W™/* mit den entsprechenden Werten
1,—1,j statt. Ebenso lassen sich komplexe Multiplikationen mit W% mit nur zwei
statt liblicherweise vier reellen Multiplikationen berechnen, da Real- und Imaginér-
teil von W8 =1/1/(2) + j/+/(2) gleich grof sind.

Nimmt man statt einer Zerlegung der Summe durch zwei eine Zerlegung durch 4
vor, erhélt man den Radix-4 Algorithmus. Anstelle der Werte 1 und —1 nehmen
hier die Faktoren der Summenstufen die Werte 1,—1,5 und —j an. Auch hier finden
Multiplikationen nur mit den Twiddle-Faktoren statt. Da hier jedoch nur logs(N)
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Abbildung 3: Signalflufsgraph einer 16 Punkte Radix-2 FFT mit “decimation in frequen-
cy’.

Stufen benotigt werden, reduziert sich die Zahl der nétigen Multiplikationen theore-
tisch auf die Halfte. Da jedoch viele Multiplikationen mit 1 ersetzt werden, entfallen
in der Praxis nur etwa 20% der Multiplikationen. Bei einer Implementation eines
Radix-4-Algorithmus ist dabei darauf zu achten, daf die innere Summe von 4 - 4
Werten auch logarithmisch optimiert ausgefiihrt wird. Ansonsten verschenkt man
schnell die Rechengeschwindigkeit, die man durch die Multiplikationen gewonnen
hat, wieder mit zusétzlichen Additionen.

Der Radix-4 Algorithmus lafst sich nur bei Eingangsdaten mit der Zahl N als Vie-
rerpotenz anwenden. Aufgrund der stufenweisen Berechnung, die voneinander un-
abhéngig durchgefiihrt werden kann, lassen sich jedoch Mischalgorithmen finden.
Bei diesen wird den Basis-4 Stufen eine Basis-2 Stufe vorangestellt. Dadurch lafst
bei einer beschleunigten Berechnung derselbe Eingangsraum wie bei dem Radix-2
Algorithmus erschliefsen.

Prinzipiell 1a#t sich die Zahl der Multiplikationen durch weiteres Erhohen der Basis
noch weiter reduzieren. Der Gewinn ist jedoch nur marginal und betragt fiir einen
Radix-16 Algorithmus ungefihr 5% gegeniiber Radix-4. Zu einem Ende kommt diese
Moglichkeit der Optimierung, wenn die linke und rechte Stufe der FF'T gleich grofs



3 THEORETISCHE GRUNDLAGEN 16

sind. Die Multiplikationen, die in der Mitte der beiden Stufen liegen, lassen sich
so optimal minimieren. Der Algorithmus wiirde einem Radix-sqrt(N) Algorithmus
entsprechen.

3.3 Berechnung der IFFT mittels FFT

Um nicht die gesamte Optimierungsarbeit doppelt machen zu miissen, wére es wiin-
schenswert, einen einzigen Algorithmus zu besitzen, der sowohl FFT wie auch die
Inverse berechnen kann. Bei genauerer Betrachtung des FFT-Algorithmus fallt leicht
auf, unter welchen Bedingungen eine FF'T zur Berechnung einer IFFT verwendet
werden kann. Betrachtet man die Gleichungen fiir FFT und IFFT, ist der einzige
Unterschied im Produkt von x und dem Drehfaktor W zu sehen. Formulieren wir
das Produkt ausfiihrlich:

FFT:
z(k)-e? —
2(k) - (cos(=¢) + jsin(—9¢)) —
(@ +5b) - (cos(d) — jsin(¢))
IFFT:

z(k) - e® —
(a+jb) - (cos(¢) + jsin(¢))

Zunéachst fallt auf, daf sich die IFFT mittels einer FFT berechnen léft, wenn man
entweder die Eingangswerte x, oder die Drehfaktoren W komplex konjugiert und
das Ergebnis ebenfalls komplex konjugiert. Formuliert man weiter

FFT:
Re = acos(¢) + bsin(¢)

Im = bcos(¢) — asin(g)
IFFT:
Re = acos(¢) — bsin(9)

Im = asin(¢) + bcos(¢)

sieht man, daf auch durch einen Tausch von Real- und Imaginérteil der Eingangs-
werte vor und nach der FFT eine inverse Transformation berechnet wird. Dies laft
sich durch Implementation mit Hilfe eines Zeigers auf Real- und Imaginarteil in
zwel Befehlen realisieren. Die IFFT ist im Rahmen des COFDM-Modulators auf
diese Weise realisiert worden.
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3.4 Definition eines Echtzeitsystems

Eine gute Definition eines Echtzeitsystems findet sich in [8]. Die wesentlichen Ge-
danken sollen hier zusammengefaftt werden, Ein Echtzeitsystem ist ein System, in
dem die korrekte Funktion nicht nur von den Ausgaben, sondern auch von der Zeit,
zu der diese Ausgaben erzeugt werden, abhéngt. Die Zeit zwischen einer Eingabe
und den daraus resultierenden Ausgaben heifst Antwortzeit.

Damit die Umwelt auf ein System reagieren kann, mufs es eine Ausgabe erzeugen. Ein
Echtzeitsystem erzeugt immer — auch im Fehlerfall — eine definierte Antwort (Re-
aktivitdt). Das impliziert, dalt das System vorhersagbar ist und formal beschrieben
werden kann. Im einfachsten Fall wird einfach eine Zustands- oder Fehlermeldung
an den Benutzer ausgegeben, der dann das System daraufhin genauer untersucht.

Ebenfalls garantiert ein Echtzeitsystem eine Antwort innerhalb einer maximalen
Zeit auf eine Eingabe hin. Die maximal zulédssige Antwortzeit bestimmt die physi-
kalische Umgebung, in der das System betrieben wird. Man unterscheidet hier noch
zwischen harten und weichen Echtzeitsystemen. Bei harten Systemen ist die Einhal-
tung der maximal zulédssigen Antwortzeit zwingend vorgeschrieben. Eine Antwort
nach dieser Grenze ist unbrauchbar und wertlos. Bei einem harten System, welches
diese Grenzen iiberschreitet, kann dies Gefahr fiir Menschen oder Material bedeu-
ten. Ein weiches System ist ein System, bei dem die Antwortzeiten nur im zeitlichen
Durchschnitt eingehalten werden miissen. Einzelne Uberschreitungen kénnen in der
Auswirkung abgefedert werden oder sind durch einen Pufferspeicher kurzfristig vom
realen System getrennt.

Fiir ein Echtzeitsystem mit harter Grenze sind zum Beispiel Fahrzeug- oder Flug-
zeugsteuerungen vorstellbar. Als Beispiel fiir ein System mit weicher Grenze mag
man sich einen Prozef an einem Fliefsband vorstellen. Das Fliekband kann vor und
hinter dem Prozefs ein Zwischenlager fiir ankommende Teile besitzen. Der eigentli-
che Prozefs hat also einen Spielraum, innerhalb dessen seine Durchlaufzeit pro Teil
schwanken darf. Wie man daran sieht, treten in der Realitdt meistens harte und
weiche Grenzen zusammen auf. In jedem Fall sollte fiir das System ein Zustand, wie
zum Beispiel das Auslosen eines Alarms, vorgesehen werden, mit dem es auf das
Uberschreiten der zuldssigen Antwortzeiten reagiert.

Ebenfalls wird an den Beispielen deutlich, daft die Verarbeitungszeit, die dem Pro-
zeft zur Verfligung steht, eine relative Grofse ist. Sie ist einerseits durch die gesetzte
Aufgabe begrenzt. Auf der anderen Seite lafst sie sich jedoch durch die eingesetzte
Hardware stark beeinflussen. Generell ist dabei immer eine effiziente Losung gesucht.
Diese soll sowohl den gréfstmdglichen Raum bei der Wahl der zu verwendenden Hard-
ware bieten, als auch die Robustheit bieten, die durch Verwendung eines einfachen,
minimalen Systems entsteht.
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3.5 Das Fraktional-Integer Format
3.5.1 Darstellung und Aufl6sung von Zahlenformaten

Komplexe mathematische Formeln lassen sich numerisch auf Computern nur inner-
halb eines vorgegebenen Wertebereichs 16sen. Das liegt daran, daf nur eine begrenzte
Zahl von Stellen im Computer gespeichert werden kann. Aus diesem Grunde lassen
sich komplexe mathematische Formeln auch nur mit begrenzter Genauigkeit 16sen.
In diesem Fall kann nur eine begrenzte Zahl an Nachkommastellen gespeichert wer-
den. Bei der Genauigkeit spricht man auch von Auflésung. Damit wird die Anzahl
der numerischen Stellen einer Zahl, die noch korrekt dargestellt sind, bezeichnet. Die
Stellen sind in der Digitaltechnik binédr. Die Auflésung wird bei Computern deshalb
in Bit angegeben. Die in der Nachrichtentechnik verbreitete Angabe von Dezibel
laft sich leicht daraus ableiten. Ein Bit entspricht dem Faktor zwei, daraus folgt
1Bit=20Log(2) = 6.02db.

In der fortschreitenden Entwicklung von Rechenmaschinen haben sich zwei Darstel-
lungsformen von Zahlen durchgesetzt. Zum einen der Integerdatentyp, der sich durch
die einfache Représentation in der Hardware auszeichnet, sowie der Fliefskommada-
tentyp, der sich durch grofere Fehlertoleranz und Flexibilitdt in der Anwendung
hervorhebt. Beide Datentypen werden von vielen Hochsprachen in verschiedenen
Auflésungen unterstiitzt, die jedoch synonym verwendet werden konnen. Dadurch
sind Optimierungen von Algorithmen hinsichtlich des Speicherbedarfs moglich.

Die Anzahl der Bits, die fiir die Darstellung von Zahlen verwendet wird, ist prinzipi-
ell frei wahlbar. In der Praxis stellt die verwendete Hochsprache dabei Datentypen
zur Verfiigung, die den Anspriichen der meisten Algorithmen geniigen. Unterschiede
gibt es jedoch in der Abarbeitungsgeschwindigkeit von Berechnungen. Grundsétzlich
gilt, je mehr Bits fiir die Darstellung von Zahlen verwendet werden, desto aufwen-
diger, und damit zeitraubender, ist auch eine Berechnung.

3.5.2 Integerarithmetik

Besonders schnell lassen sich Berechnungen mit ganzzahligen Werten ausfiihren. In
der Hardware ist dabei fiir jedes Bit an Genauigkeit ein Addiergatter vorhanden.
Dadurch kann die Berechnung komplett parallel durchgefiihrt werden. Da diese Dar-
stellungsform nur einfache Hardwarestrukturen voraussetzt und auch sehr schnelle
Berechnungen stattfinden, werden viele Prozessoren ausschlieflich mit dieser Tech-
nik ausgeriistet. Flielkkommaberechnungen kénnen auch auf dieser Hardware algo-
rithmisch implementiert werden, benétigen jedoch einen wesentlich héheren Zeit-
aufwand fiir eine mathematische Operation. Um den Geschwindigkeitsvorteil der
Festkomma-Arithmetik zu nutzen und dennoch Zahlen mit Nachkommastellen dar-
stellen zu konnen, existiert das sogenannte Fraktional-Integer-Format. Dabei wird
ein Teil des Zahlenstrahls mittels Multiplikation mit einer Konstante auf den Dar-
stellungsbereich einer Festkommazahl abgebildet.
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3.5.3 Rechenvorschriften bei Festkomma-Arithmetik

Additionen und Subtraktionen von zwei Fraktional-Integer-Zahlen sind dadurch mit
einfacher Integeraddition bzw. -subtraktion darstellbar. Einziges Problem dabei ist
ein eventueller Uber- oder Unterlauf des darstellbaren Zahlenbereichs. Dieses Pro-
blem tritt generell bei jeder Berechnung mit einem Computer auf, jedoch ist der
Bereich, innerhalb dessen mathematische Operationen durchgefiihrt werden diirfen,
durch die Transformation stark eingeschréankt. Dies ist auch Kern bei der effizienten
Implementierung eines Algorithmus mittels FI-Zahlendarstellung. Der Programmie-
rer muft dabei den Wertebereich, innerhalb dessen sich die darzustellenden Variablen
bewegen, genau kennen, und seine Verdnderung tiber den Ablauf des Algorithmus
verfolgen. Nur so ist eine Implementation, die sowohl schnell als auch genau ist,
moglich.

Problematisch ist vor allen Dingen die Darstellung der Multiplikation zweier FI-
Zahlen mittels einer normalen Integermultiplikation. Sinn der Transformation war
es ja gerade, den darstellbaren Wertebereich voll auszuschopfen. Eine Multiplikation
bedeutet jedoch, dafs der Wertebereich nach der Multiplikation doppelt so grofs ist
wie vorher. Eine Losung dieses Problems ist eine Normierung der grofsten Eingangs-
daten auf Eins. Bei den sogenannten Fraktional-Integer-Formaten (Qxx Formaten)
wird einfach die grofste darstellbare Zahl zu Eins gesetzt. Das bedeutet fiir Multi-
plikationen, dafs das Ergebnis nie den Wertebereich des modifizierten FI-Datentyps
iiberschreitet. Das Integerergebnis hat zwar nach wie vor einen doppelt so grofen
Wertebereich, kann aber durch das Verwerfen aller irrelevanten Nachkommastellen
wieder auf den urspriinglichen Wertebereich angepaftt werden. Dies geschieht mit-
tels Division oder einer Shift-Operation. Problematisch ist in diesem Verfahren je-
doch ein moglicher Uberlauf bei Additionsoperationen. Eine grundsitzliche Losung
fiir die Anpassung eines FI-Algorithmus an Integeroperationen bietet eine dyna-
mische Anpassung des FI-Wertebereiches an den des Integerformates. Dies ist fiir
viele Algorithmen, die stufenweise ablaufen, wie zum Beispiel auch den der schnel-
len Fouriertransformation, kein Problem. Bei der auf Eins normierten Darstellung
muf zum Beispiel nach jeder Addition und Subtraktion das Ergebnis durch zwei
geteilt werden, um einen méglichen Uberlauf zu verhindern. Dieses Verfahren wird
auch Blockgleitkommaarithmetik genannt (siche auch [7]). Bei der Interpretation
der Ergebnisse mufs der sich ergebende Vorfaktor, der durch den Algorithmus vor-
geschrieben wird, berticksichtigt werden.

3.5.4 Beschreibung des Q15-Formates

Fiir schnelle Berechnungen mit eingeschrankter Genauigkeit und sparsamem Spei-
cherverbrauch bietet sich der Q15-Datentyp an. Er basiert auf dem héaufig unter-
stiitzten 32-Bit Integer Datenformat. Ein Bit zéhlt als Vorzeichenindikator. Die ver-
bleibenden 31 Bit miissen, um eine Multiplikation in einem Schritt durchzufiihren,
doppelt so grof sein, wie der Integerbereich einer Zahl. Es werden darum 15 Bit fiir
die Représentation der Zahlen gewéhlt. Diese konnen inclusive ihrem Vorzeichenbit
platzsparend in einem 16-Bit Integer Datenformat gespeichert werden. Das Ergebnis
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einer Multiplikation belegt 30 Bits. So kénnen zwei Zahlen nach ihrer Multiplikation
noch addiert werden, bevor ein anschliefender Shift den Zahlenraum wieder auf 15
Bit beschréankt. Der bei der Addition entstehende Fehler ist somit vernachléssigbar
gering. Genau diese Rechenweise lafst sich fiir den FFT-Algorithmus des COFDM-
Modulators ausnutzen. So lafst sich der entstehende Fehler gering halten.

Der als Beispielhardware gewéhlte Prozessor unterstiitzt zudem einen préziseren
40-Bit Integer Datentyp. Mit diesem als Basis fiir eine Multiplikation konnten 4
Bits an Genauigkeit hinzugewonnen werden. Allerdings existiert kein 19-Bit Daten-
typ der gespeichert werden konnte. So miissen Abstriche beim Speicherverbrauch
und auch bei der Geschwindigkeit gemacht werden. Die in 5.8 gemachten Aussagen
iiber den zu erwartenden Fehler in der Berechnung zeigen, daft das Q15 Datenformat
den Anforderungen geniigt. Sollen doch noch Rechnungen mit mehr Bits an Auf-
l6sung durchgefiihrt werden, reichen die von der hardwareseitig angebotenen und
unterstiitzten Datenformate nicht mehr aus. Die Multiplikation zweier 19 Bit Zah-
len miteinander ergibt die groften von der Hardwareseite darstellbaren Zahlen. Um
noch grofere Auflosungen darstellen zu konnen, miifiten jetzt die Zahlen durch mehr
als eine 30 Bit Integer Variable zusammengesetzt werden. Fiir das Q30 Datenfor-
mat reicht es jedoch vollig aus, einen Algorithmus zur Verfligung zu stellen, der das
Ergebnis einer Multiplikation korrekt im Q30-Format zuriickgibt. Dabei werden die
beiden Faktoren in je zwei gleichgrofte Q15 Zahlen zerlegt, die als hochwertiger und
als niederwertiger Summand behandelt werden. Das Ergebnis der Multiplikation
ergibt sich geméifs dem Kommutativgesetz zu

(Ahi k 215 + Alo) * (th k 215 + Blo) =
Ahi * th’ * 230 -+ Alo * th’ * 215 -+ Blo * Ahz’ * 215 -+ Alo * Blo

Um das Ergebnis korrekt im Q30-Format darzustellen, werden nur die oberen 30
Stellen des Ergebnisses bendtigt. Die Berechnung des letzten Produktes kann unbe-
riicksichtigt bleiben, da dabei ein vernachlassigbar kleiner Fehler entsteht. Insgesamt
werden jedoch drei Multiplikationen und drei Additionen benétigt, um das Ergebnis
zu erhalten. Der Rechenaufwand fiir einen Algorithmus steigt bei Verwendung des
Q30 Formates entsprechend.

3.6 Galois-Felder

“Bin Galois-Feld ist ein Kdorper mit einer endlichen Anzahl von Elementen. Ein
Galois-Feld mit q Elementen wird als GF(q) bezeichnet.” (|20],Seite 100)

Ein Korper ist ein Zahlenraum, iiber dem zwei Funktionen definiert sind. Beide
Funktionen miissen ein Element fiir Identitdt besitzen, die iiblicherweise mit Null
und Eins bezeichnet werden. Zu der ersten Funktion mufs die Inverse existieren und
eindeutig sein. Fiir die zweite Funktion gilt dasselbe mit Ausnahme des Nullelements.

Beispiel: Die ganzen Zahlen, die Addition und die Multiplikation bilden einen Kor-
per. Die inversen Funktionen sind Subtraktion und Division. Das Identitétselement
beziiglich der Addition ist die Null, das der Multiplikation die Eins.
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Rechentabellen fiir die Modulo-2-Arithmetik in GF(2)
+/-10]1]*|0]1
010(11)]0]0]0
171(01]0]1

Es sind zwei Arten von Galois-Feldern bekannt, die Restklassen modulo einer
Zahl und die Restklassen modulo eines Polynoms. Wird der zuléssige Zahlraum bei
einer Addition oder einer Multiplikation {iberschritten, wird der Rest nach einer Di-
vision als Ergebnis der Operation definiert. Bekanntestes Beispiel ist die Bool’sche
Algebra, die auch als Restklassenarithmetik modulo Zwei in GF(2) aufgefaft werden
kann. Die ODER-Verkniipfung entspricht dabei der Addition, die UND-Verkniipfung
der Multiplikation. Addition und Subtraktion sind identisch, ebenso Multiplikation
und die Division, die jedoch nur fiir 1 -1 definiert ist.

Bei der Restklassenrechnung modulo einem Polynom wird fiir jeden Koeffizienten
des Polynoms ein Bit als Zahl in GF'(2) benutzt.

Rechentabellen fiir die Modulo-2-Arithmetik in GF(2?)
mit Generatorpolynom d? +d + 1

L - of t] dfditf] *Jo] 1] dfdit]
0 0] 1] d|d L] o0Jo] o] o] o
1 1] ofda| df 1jo| 1| d|a1
d d|dri]| 0] 1| dJo] d|a1]| 1

d1dri| d] 1] of[dijoja1] 1] d

In jedem Galois-Feld existiert mindestens ein primitives Element. Dieses zeichnet
sich dadurch aus, daf alle Elemente des GF mit Ausnahmen der Null als Potenz des
primitiven Elements dargestellt werden konnen. In obiger Tabelle sind d und d + 1
primitive Elemente. Fiir d sind die Potenzen d° = 1,d* = d,d®> = d-d = d + 1,
d® =d-(d+1) = 1. Es lift sich mit dieser Beziehung durch Angabe eines primitiven
Elements « auch ein diskreter Logarithmus definieren: o = x — log,(x) =i . Das
Ergebnis einer Multiplikation in GF(q) kann so auch iiber den diskreten Logarithmus
und eine Addition berechnet werden. Es gilt:

z -y = aloga@)Hlogaly)

Sind die Logarithmen der Zahlen und die Exponenten von « in Tabellen abgelegt,
laft sich die Multiplikation effizient durch eine Addition und 3 Tabellennachschliage
implementieren. Dadurch entféllt die Polynommultiplikation und die anschliefende
Division durch das Generatorpolynom. Die Grofe der Tabellen liegt fiir GF(q) bei
jeweils q Eintrégen. Natiirlich kann das Ergebnis einer Multiplikation auch direkt in
der Tabelle nachgeschlagen werden. In diesem Fall benotigt man jedoch ¢? Eintrége.
Auch hier 14t sich wieder die Gesetzmifigkeit aus Kapitel 3.7 anwenden.
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3.7 Performance-Memory Modell

Die Optimierung einer Software hinsichtlich Speicherverbrauch und Geschwindigkeit
muf normalerweise mit einem Kompromifs enden. Bei einem gewissen Grad der Op-
timierung léft sich die Abarbeitung von Algorithmen nur noch beschleunigen, wenn
man den Datenstrukturen mehr Platz einrdumt. Zum Beispiel konnten zu speichern-
de Daten komprimiert abgelegt werden. Dazu wird aber Rechenzeit fiir das Packen
und entpacken benotigt.

broken Image

Abbildung 4: Modell eines Automaten

Verallgemeinert 1aft sich ein Prozeft als Automat mit Ein- und Ausgabedaten und
einem Zwischenspeicher darstellen. Der Speicher enthélt die Zustandsinformatio-
nen. Aus diesem Status und den Eingabedaten berechnet der Prozef {iber logische
Funktionen eine Ausgabe sowie den neuen Status des Prozesses. Sind die Anzahl
der Ein- und Ausgaben finit und in der Menge konstant, 14t sich die Reaktion des
Automaten vorherberechnen. Die Antworten kénnen dann einfach in einer Tabelle
nachgeschlagen werden. Die Berechnung der Ausgangswerte findet so in immerhin
einem Schritt statt. Der Gewinn héngt davon ab, wie aufwendig die Funktion nor-
malerweise zum Berechnen des Ausgangssignals ist.

Die Anzahl der Eintrédge in der Tabelle ist durch die Grofe des Eingabevektors und
durch die Grofe des Zustandsvektors bestimmt. Ein Eintrag der Tabelle mufs den
Ausgabevektor und den neuen Zustandsvektor beinhalten. Nehmen wir als Beispiel
einen Prozefs mit 4 Bit Eingangsvektor, 8 Bit Zustand und 16 Bit Ausgangsvektor,
so ergibt sich die Zahl der Eintriige in die Tabelle zu 2**8. Jeder Eintrag besitzt
die Groke 8 + 16 Bit. Die Tabelle wiirde als eine Grofe von 2478 - (8 + 16) = 98304
Bit besitzen. Vor allem Eingangs- und Zustandsvektor begrenzen durch ihren expo-
nentiellen Einflufs auf die Tabellengrofse eine sinnvolle Anwendung. Versucht man
beispielsweise die 2048 Punkte FFT mittels einer Tabelle zu implementieren, stofst
man schnell an die Grenzen des Machbaren. Die 2048 Triger werden mit je 2 Bit
moduliert. Einen Zustand benétigt die FFT nicht. Dennoch zdhlt die Tabelle fiir
dieses Beispiel 24%% Eintrige. Ein heutiger Rechner kann maximal 23?2 Worte ad-
dressieren.
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Ist die Tabelle zu grof, ist der Programmierer gefragt. Er kann priifen, ob sich die
Grofe des Eingangsvektors noch reduzieren, oder sich wenigstens eine Teilfunktion
in der Tabelle speichern lafst. Oft 14t sich die Funktion in zwei Teile trennen, die
dann jeweils fiir sich in einer Tabelle nachgeschlagen werden. Fiir das obige Beispiel
wiirde das zum Beispiel bedeuten, dafs man zwei Automaten hintereinander schaltet,
die jeweils einen Zustandvektor der Grofe 4 Bit besitzen. Die Tabellen wiirden dann
eine GroRe von je 247 . (4 4+ 16) = 5120 Bit besitzen, zusammen also ein Zehntel
der urspriinglichen Tabelle. Wahrend es fiir rein logische Funktionen Optimierungs-
verfahren zur Minimierung der Funktionszahl gibt, sind mir jedoch Verfahren fiir
andere Funktionen wie <,>,if() und Tabellen nicht bekannt. Hier ist immer noch
Kreativitdt und Programmierwissen gefragt.

Geschwindigkeit
T T

. .
Speicherverbrauch

Abbildung 5: Qualitativer Verlauf der Geschwindigkeit tiber dem zur Verfiigung stehen-
den Speicher

Durch das Aufteilen des Automaten sind zur Berechnung des Ausgangssignals jetzt
zwei Tabellenzugriffe nétig. Dadurch ist der Speicherverbrauch um den Faktor zehn
gesunken. Dieses Prinzip lafst sich nicht immer anwenden, soll jedoch, um eine all-
gemeine Aussage treffen zu kénnnen generalisiert werden. Gehen wir also davon
aus, dafs jedes nicht interaktive Programm, welches Ein- und Ausgaben erzeugt,
durch eine variable Zahl an Tabellenzugriffen realisiert werden kann. Trégt man die
Grofse aller Tabellen iiber die Zahl der Tabellenzugriffe auf, erhdlt man ein unge-
féhres Performance-Memory-Modell. In diesem Diagramm lafst sich ablesen, welche
Moglichkeiten man als Kompromifs zwischen Speicherverbrauch und Geschwindig-
keit offen hat. Generell wird eine effiziente Losung immer in der Nahe der starksten
Rundung zu finden sein.

Dieses Modell ist leider noch zu primitiv, um der Wirklichkeit zu entsprechen. Die
Zugriffszeit ist namlich fiir alle Tabellen gleich angenommen worden. In der Rea-
litdt mufs jedoch, um eine um Grokenordnungen verschiedene Speichermenge zu
realisieren, auf unterschiedliche physikalische Technologien zuriickgegriffen werden.
Lassen sich heute mehrere Kilobytes in kleinen Caches mit denselben Taktraten
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Geschwindigkeit
T

Speicherverbrauch

Abbildung 6: Qualitativer Verlauf der Geschwindigkeit tiber dem zur Verfiigung stehen-
den Speicher unter Beriicksichtigung von zunehmenden Zugriffszyklen

wie der Prozessor ansteuern, muf man zur Realisierung mehrerer Megabytes be-
reits mehrere Wartezyklen der CPU einkalkulieren. Bringt man dieses Wissen in das
Geschindigkeits-Speicherverbrauch-Diagramm mit ein, erhdlt man eine Kurve mit
einem Maximum. Ziel des Optimierungsverfahrens ist es jedoch nicht, dieses Maxi-
mum zu treffen. Schlieflich gibt es noch andere Griinde, wie zum Beispiel Kosten,
Systemgrofse und Verfiigharkeit, welche bei der Realisierung eines Systems eine Rolle
spielen. Es sollte jedoch bei der Implementierung berticksichtigt werden. Weiterhin
sollte man sich merken, dafs Funktionen schon durch Einsatz kleiner Tabellen deut-
lich beschleunigt werden kénnen und daf grofe Tabellen durch Trennung verkleinert
werden konnen. Bei der Optimierung der Funktionsblocke ist jeweils versucht wor-
den, den Arbeitsaufwand mit Hilfe von Tabellen zu verringern.
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4 Systemanalyse

4.1 Informelle Analyse

Ziel der informellen Analyse soll es sein, einen Uberblick iiber die gestellte Aufgabe
zu geben. Dabei sollen vor allem die Grenzen des Systems abgesteckt werden und
absehbare Probleme angesprochen werden. Es soll informiert werden, jedoch noch
nicht spezifiziert, um der Kreativitdt bei der Umsetzung genug Freiraum zu lassen.

4.1.1 Modularer Aufbau

Einer der Hauptanspriiche an das zu entwickelnde System ist die Forderung, es dy-
namisch weiterentwickeln zu kénnen. Dabei wird davon ausgegangen, daf fiir eine
optimale Ausnutzung der Hardwareressourcen auch eine Anpassung der Software
in unterster Ebene notwendig ist. Das Grundsystem soll also durch austauschba-
re Module gebildet werden. Die Grofe eines Moduls ist zunéchst vollig willkiirlich
wahlbar, kann aber durch eine rationale Trennung des Systems ein in sich struktu-
riertes Design bestimmen. Die Grenzen eines Moduls werden also durch vom System
logisch definierte Grenzen vorgegeben. Um dennoch eine Flexibilitdt in der Grofe
der auszutauschenden Softwareteile zu bieten, wird die funktionale Programmie-
rung, die Hochsprachen anbieten, zu Hilfe gezogen. Das Problem wird also zunéchst
in logisch zusammenhéngende Blocke unterteilt. Diese werden dann wieder funktio-
nal mittels der Hochsprache realisiert und bilden eine weitere hierarchische Schicht.
Zwischen den einzelnen Modulen liegen definierte Schnittstellen, deren Anforderun-
gen beim Austausch eines Moduls erfiillt werden miissen. Bei einer Neudefinition
einer Schnittstelle miissen beide Module auch neu angepalst werden. Das bedingt
einen hoheren Aufwand aber auch den groftmoglichen Freiheitsgrad. Grundséatzlich
sollten die Module jedoch in sich geschlossen bleiben.

4.1.2 Evolutionire Softwareentwicklung

Das freie Entwicklungskonzept ohne detailiert vorgeschriebene Spezifikation ent-
spricht dem evolutiondren Softwarekonzept. Vorteil dieses Vorgehens ist vor allem
die schnelle Entwicklungszeit. Da an Spezifikation, Design und Validierung gleich-
zeitig gearbeitet werden kann und keine explizite Kontrollphase vorgeschrieben ist,
kénnen Anderungen und Evolution sehr schnell stattfinden. Der besondere Nach-
teil der fehlenden Kontrollphasen ist ein zunehmend unstrukturierter Sourcecode.
Diesem soll durch die vorangehende Modularisierung und die Einfithrung definier-
ter Schnittstellen entgegengewirkt werden. Sie ermdglichen dem Entwickler, sich auf
einen begrenzten Bereich des Softwareprojekts zu beschrianken. Die Definition des
evolutionédren Konzepts sowie andere Konzepte 1aft sich in [23] nachlesen.

4.1.3 Unterscheidung zwischen Entwicklungs- und Zielsystem

Grundsatzlich ist Die hardwareunabhéngigkeit des Konzepts auf Systeme beschréankt,
die von den verfiigharen Werkzeugen unterstiitzt werden. Oberste Prioritat geniefst
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dabei der Hochsprachencompiler, ohne den das Softwarekonzept nutzlos ist. Durch
den Einsatz von Crosscompilern kann das Konzept in ein Entwicklungssystem und
ein Zielsystem getrennt werden. Die Anspriiche an das Entwicklungssystem sind
dabei andere als die des Zielsystems. Die an das Entwicklungssystem gestellten
Anforderungen beinhalten die Forderung den Compiler, das Make-Utility und ein
hierarchisches Filesystem zu unterstiitzen. Bei der Portierung auf eine andere Ent-
wicklungsplattform miissen Anderungen an der Software vorgenommen werden. Das
Konzept 1dft sich jedoch iibernehmen.

4.1.4 Benotigte Module des COFDM-Encoders

Der COFDM-Encoder besitzt vier Schnittstellen zur Aufenwelt: zum einen die Ein-
gabeschnittstelle des ETI-Datenstromes, zum zweiten die Ausgabe des zeitdiskreten
Ausgangssignals und zum dritten das Bedienteil mit Status Ein- und Ausgabe. Dazu
kommt noch eine Zeitreferenz. Die Ein- und Ausgaben sind prinzipiell von der ver-
wendeten Hardware abhéngig. Sie sollten trotzdem als jeweils eigenstandiges Modul
gekapselt werden, um der nachfolgenden Berechnung den groftmdéglichen Freiraum
zu gewahren. Die funktionalen Blocke der eigentlichen Modulatorsoftware konnen
nach dem Festlegen der Aufenschnittstellen frei gewahlt werden und sollten nach
logischer Zusammengehorigkeit gewahlt werden.

4.2 Strukturierte Analyse
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Abbildung 7: Oberstes Datenflufsdiagramm fiir den COFDM-Encoder

Der Sinn der strukturierten Analyse ist es, eine prézise und vollstéindige Be-
schreibung des Systems zu liefern, um eine systematische oder parallele Umsetzung
der einzelnen Teile zu erméglichen, ohne dabei mit Uberraschungen konfrontiert zu
werden. Eine vollstiandige strukturierte Analyse des COFDM-Encoders findet sich
in [21] und lag zu Beginn der Arbeit vor. Die Analyse bezieht sich dabei auf das
realisierte Geréat, welches zuséatzliche Funktionalitat bietet, die iiber das eigentliche
Modulationsverfahren hinausgeht. Bei der nun realisierten Aufgabe wurde die Ana-
lyse auf die zur Kanalkodierung und OFDM-Modulation benotigten Teile reduziert.
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4.3 Design
4.3.1 Grenzen des Designs

Da das Design der COFDM-Software selber einem dynamischen Prozefs unterwor-
fen werden soll, sind einer endgiiltigen Form der strukturierten Darstellung Grenzen
gesetzt. Das realisierte System stellt eine Umsetzung aller zur Erzeugung des Aus-
gangssignals notigen Teile dar. Gerade die hardwareabhénigen 1/O-Prozesse sind
jedoch nur in Ansétzen implementiert, sodafs sich das System testen léfst. Das ent-
wickelte System ist als Grundlage zu verstehen, auf dessen Basis endgiiltige Versio-
nen fiir einen COFDM-Modulator entstehen kénnen. Dementsprechend stehen viele
EXE-Files zur Verfiigung, die unterschiedliche Funktionen erfiillen.

4.3.2 Aufbau der Hierarchien des Entwicklungssystems

broken Image

Abbildung 8: Hierarchische Schichten, in denen unterschiedliche Module entwickelt wer-
den konnen.

Um ein hierarchisches Konzept fiir den COFDM-Modulator umzusetzen, wird auf
die Dateistruktur des Betriebssystems zuriickgegriffen. Innerhalb des Make-Utilitys
wird dabei festgelegt, in welche Pfade verzweigt wird. Es gibt dabei drei unterschied-
liche hierarchische Schichten. Zwei davon werden durch das Filesystem reprasentiert
und vom Make-Utility kontrolliert, die dritte entspricht einem Funktionsaufruf und
ist verbindlich. Fiir diese letzte Schicht sind die Schnittstellen in Headerdateien
festgelegt. Das Makefilekonzept unterstiitzt dabei durch die Angabe unterschiedli-
cher Variablen die Auswahl der verwendeten Module. So kénnen fiir unterschiedliche
Zielplattformen auch unterschiedliche Module zusammengefiigt werden. Die Compi-
ler kdnnen ebenfalls durch die Vergabe einer Praprozessorvariablen die ausgewéhlte
Zielplattform zur Zeit des Kompilierens identifizieren und so spezifischen Code ge-
nerieren.
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broken Image

Abbildung 9: Struktur des COFDM-Encoders

4.3.3 Aufbau des COFDM-Encoders

Der COFDM-Encoder ist im wesentlichen durch eine Bibliothek reprasentiert. Die
Bibliothek ist in sich geschlossen und enthélt neben den Modulationsfunktionen noch
Module zum Messen der Zyklenzahlen einer Routine und zum Speichern von Ausga-
ben. Die Ausgabe Ablaufinformationen kann an oder ausgeschaltet werden. Normale
Ausgaben benétigen jedoch die vom Laufzeitsystem oder Betriebssystem zur Verfii-
gung gestellten Ein- und Ausgabefunktionen. Alle sonstigen Ein- und Ausgabeope-
rationen sind aus der Bibliothek ausgeschlossen worden, da sie von der verwendeten
Zielplattform abhéngen.

4.4 Hardwareunabhingigkeit

Eine weitere Anforderung an das System ist die Portierbarkeit auf andere Hard-
wareplattformen. Prinzipiell gibt es sehr unterschiedliche Formen der Hardware, zum
Beispiel 'Programmable Grid Arrays’,’PLD’s’ ’ASIC’s und "Digitale Signal Prozesso-
ren’, DSP’s. Um das Softwarekonzept einschrinken zu konnen, wurden als mogliche
Zielplattformen allem voran "all purpose DSP’s” gewahlt. Es ist moglich die Soft-
ware oder Teile davon, als Grundlage fiir andere Hardwarebeschreibungssprachen,
wie zum Beispiel VHDL, zu verwenden. Dalfiir ist jedoch die Erstellung eines neuen,
eigenstandigen Konzeptes notwendig.

4.5 Programmiersprache

Fiir DSP-Plattformen gibt es in der Regel Entwicklungsumgebungen, welche Hoch-
sprachencompiler und Simulator enthalten. Eine direkte Hardwareanpassung ist des-
halb nicht notwendig. Als mogliche Hochsprachen sollen hier C, Ada und Java mit-
einander verglichen werden.
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4.5.1 Java

Das Konzept der hardwareunabhéngigen Software verfolgt auch JAVA. Bei dieser
Sprache wird das JAVA-Programm zunéchst in einen Byte-Code {ibersetzt. Erst
dieser Byte-Code wird auf der Hardware ausgefiihrt oder emuliert. Dadurch wird
im Prinzip eine weitere Schicht eingefiihrt, zu der sich auf beiden Seiten eine stan-
dardisierte Softwareschnittstelle befindet. JAVA ist eine C++ &hnliche Sprache. Sie
ist jedoch tiberwiegend fiir die Entwicklung graphischer Oberflichen gedacht. Pro-
blematisch bei einer Umsetzung in JAVA ist vor allen Dingen die Abarbeitungs-
geschwindigkeit. Da die Sprache auf einer standardisierten Schnittstelle aufsetzt,
bleibt fiir hardwarenahe Maschinenbefehle und Optimierungen kaum Platz. Ebenso
ist die Erweiterung eines auf JAVA aufbauenden Softwarekonzepts um maschinenna-
he Konstrukte wie zum Beispiel Assembler nicht méglich. Da generell eine effiziente
Methode gesucht wird, ist JAVA aufgrund der Ausfiihrungsgeschwindigkeit nicht
geeignet.

4.5.2 Ada

ADA ist aus dem Wunsch nach Vereinheitlichung bei unterschiedlichen Software-
projekten entstanden und findet vor allem in vielen staatlichen Projekten Verwen-
dung. Ada ist eine ausgezeichnete Large-Scale Programmiersprache. Sie enthélt bei-
spielsweise Sprachkonstrukte fiir Interprozefskommunikation und Synchronisation.
Die Umsetzung eines effizienten COFDM-Modulators setzt jedoch vor allem die
Entwicklung kleiner, schneller und speichersparender Funktionen voraus.

4.5.3 C

C ist von sich aus sehr hardwarenah. In dieser Hochsprache geschriebene Program-
me konnen sehr direkt auf die anschliellende Assemblerebene iibertragen werden.
So ist eine Optimierung des Programms bereits in der Hochsprache moglich. Eine
Anbindung von Assemblersprache und die damit verbundene hardwarenahe Anpas-
sung auf niedriger Ebene ist ebenfalls moglich. Weiterhin ist C eine sehr verbreitete
Sprache. Ein entsprechender Compiler ist fiir nahezu jede Prozessorumgebung vor-
handen. Eine weitere Spezialitdt der Sprache ist die Unterstiitzung verschiedener
Wortgrofen bei Integer- und Floatingpointdatentypen, die eine effiziente Ausnut-
zung des verfiighbaren Speichers ermdoglichen. Aus diesen Griinden wurde C fiir die
Implementierung des COFDM-Enkoders gewahlt.
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5 Implementierung

5.1 Benutzte Werkzeuge/Umgebung

Die fiir die Softwareentwicklung notigen Werkzeuge wurden von der Firma Bosch
zur Verfiigung gestellt. Zum Aufbau des hardwareunabhéngigen Konzeptes diente
hauptséchlich das GNU 'make’-tool. Die Flexibilitat und die Menge an Kommandos,
die dieses Werkzeug beinhaltet, machten ein ebenso flexibles all-in-one Geriist fiir
die Bibliothek moglich. Grundsétzlich 1aft sich das Problem auch mit weniger kom-
fortablen 'make’-Programmen l6sen, eine Portabilitdt auf dieser Ebene ist jedoch
nicht vorgesehen.

Als Compiler diente sowohl fiir Linux- als auch fiir Sun-Systeme der GNU-Compiler.
Fiir das Testsystem mit dem Signalprozessor wurden spezielle Crosscompiler der
Herstellerfirma zur Verfiigung gestellt. Das Make-File Gertist mufste fiir diese Compi-
ler extra angepalt werden. Die Anpassung der Makefiles an die Kommandozeilenop-
tionen sowie die Syntax fiir spezielle Einstellungen des Compilers mufs fiir jeden neu-
en Compiler vorgenommen werden. Prinzipiell sind den Moglichkeiten jedoch kaum
Grenzen gesetzt. Der Aufwand ist beschrinkt, jedoch mufs das Makefile-konzept
bekannt sein. Zum Linken von Bibliotheken sind Archivierungstools der jeweiligen
Zielplattform zum Einsatz gekommen.

Als Beispielhardware ist der Prozessor TMS320C6201 von TexasInstruments zu ver-
wenden. Da Prozessoren einer sogenannten Familie angehoren, die vom Befehlssatz
und den verfiighbaren Werkzeugen her nahezu identisch sind, konnen die Ergebnisse
auf alle Schwesterprozessoren iibertragen werden. Zu der Familie des C6201 gehoren
alle Prozessoren, deren Bezeichnungen mit TMS320C6 beginnen. Besonders inter-
essant ist dabei die Ankiindigung des Floatingpoint-Prozessors TMS320C67xx. Der
(C6201 ist ein reiner Integer-Prozessor. Floatingpointoperationen werden zwar un-
terstiitzt, werden jedoch durch Software emuliert und benétigen dementsprechend
viel Rechenzeit.

5.2 Der COFDM-Modulator als Echtzeitsystem

Der COFDM-Modulator erhélt als Eingaben einen ETI-Strom, ein Zeitsignal und
Modusinformationen durch ein Bedienpult. Die dazu gehoérenden Aufgaben sind die
Erzeugung des Basisbandsignals, die Synchronisation mit dem Zeitsignal und die
Interpretation und Ausgabe der Reaktion auf Bedienereingaben hin. Ist die Verar-
beitung der einzelnen Schritte schnell genug, kann auf ein System mit konkurrieren-
den Prozessen verzichtet werden. Die einzelnen Arbeitsschritte konnen als getrennte
Prozeduren realisiert werden, die nacheinander aufgerufen werden.

Die Bearbeitung der Bedienerinformationen stellt dabei keine hohen Anforderun-
gen an das System. Es handelt sich dabei in erster Linie um das Setzen und Lesen
des Systemzustandes. Die Zeittoleranzen diirfen fiir einen Bediener im Bereich von
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Sekunden liegen und sind damit beim Vergleich mit den anderen Aufgaben unkri-
tisch.

Die Synchronisation mit dem Zeitsignal stellt eine harte Grenze fiir die Erzeugung
des Basisbandsignals dar. Grundsétzlich gilt, dak der Prozefs zur Berechnung des
Signals schon vor der Synchronisation mit dem Zeitsignal angestofsen werden muf.
Die Synchronisation kann dann iiber einen Zwischenpuffer erfolgen, dessen Inhalt
synchron zum Zeitsignal ausgegeben wird. Die Dimensionierung dieses Speichers
hangt sowohl von der Berechnungsweise des Signals, als auch von deren Berech-
nungsdauer ab. Durch einen entsprechenden Algorithmus ist hier eine Minimierung
an die Systemvoraussetzungen moglich.

Die Berechnung des Basisbandsignals stellt die Hauptaufgabe des Systems dar. Sie
ist auch die aufwendigste Aufgabe und bestimmt somit mafgeblich die Dimensio-
nierung des Systems. Grundséatzlich muf das Signal kontinuierlich erzeugt werden.
Um diese kontinuierliche Aufgabe in endliche Schritte endlicher Berechnungszeit zu
unterteilen, muf das Signal im Zeitbereich ebenfalls in endliche Segmente, die un-
abhingig voneinander berechnet werden konnen, unterteilt werden. Hinzu kommt
ein Pufferspeicher, aus dem das Signal gelesen werden kann, wéahrend der Prozessor
sich den anderen Aufgaben widmet. Dieser Pufferspeicher kann gleichzeitig zur Ab-
schwéchung der sonst harten Grenze fiir die Erzeugung des Signals dienen.

Prinzipiell 14t sich die Grofse eines zu berechnenden Signalabschnitts im Zeitbe-
reich frei wihlen. Je nach Grofe werden jedoch unterschiedliche Anforderungen an
die Berechnungsgeschwindigkeit und den Zwischenspeicher gestellt. Die Antwortzeit
héngt von der Berechnungszeit fiir ein Segment ab. Sie ist unabhéngig von der Hard-
ware und logischerweise minimal fiir einen moglichst kurzen Teilabschnitt. Folglich
sollte das Signal in moglichst kleine Teilstiicke heruntergebrochen werden. Setzt man
fiir die Erzeugung des Signals die Berechnung mittels einer Fouriertransformation
voraus, ist das kleinste unabhéngig voneinander berechenbare Teilstiick des Signals
ein Symbol. Der Funktionsaufruf fiir die Berechnung eines Symbols ist endlich und
mit einem finiten Automaten darstellbar.

Fiir die realisierte COFDM-Modulator-Software ist somit ein Symbol als kleinster zu
berechnender Signalabschnitt gewahlt worden. Da die Struktur des COFDM-Signals
einen logischen Aufbau von mehreren Symbolen, einen DAB-Rahmen, vorsieht, ist
im Programm ein aufwendigerer Algorithmus nétig, der den Zustand der Symbol-
berechnung innerhalb eines Rahmens speichert und auswertet.

Obwohl der grofste Teil der Berechnungen fiir die Symbole aufgewendet werden
mufs, hangt die Einhaltung der Zeitschranken auch von zufalligen Ereignissen ab.
Insbesondere ist hier die Berechnung des Reed-Solomon-Encoders zu erwéhnen. Der
benotigte Aufwand héngt davon ab, ob die Daten fehlerfrei oder fehlerbehaftet am
COFDM-Encoder ankommen. Die Rechenzeit ist bei maximaler Fehlerzahl etwa
doppelt so hoch wie bei Fehlerfreiheit. Das gleiche Symptom verursacht ein Wechsel
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im Multiplex oder ein fehlerhafter CRC. Prinzipiell léft sich das System so defi-
nieren, dafs auch im ungiinstigsten Fall die harte Grenze immer eingehalten werden
kann. Es gébe allerdings auch die Mdoglichkeit, durch ein gezielt fehlerhaftes Si-
gnal die “firm-time-requirements” weiter abzuschwéchen. So konnte die Berechnung
der Senderkennung (TII) entfallen oder statt einer Fehlerkorrektur ein “muting”,
ein Uberdecken des fehlerhaften Signals, durchgefithrt werden. Prinzipiell soll der
COFDM-Encoder jedoch auch bei fehlerhaftem Signal ein moglichst stabiles Signal
liefern.

5.3 Prozefioptimierung

In den folgenden Kapiteln sollen Ansétze zur Optimierung des COFDM-Enkoders
aufgefithrt werden. Die Optimierungen beziehen sich dabei auf die algorithmische
Ebene. Es Ubersicht iiber den generellen trade-off zwischen Speicher und Geschwin-
digkeit wird in [?| gegeben. Anschliefend werden die arbeitsintensiven Funktionen
des COFDM'’s einzeln besprochen.

5.4 Cyclic Redundancy Check

Der CRC “cyclic redundancy check” gehort zu den linearen, zyklischen Blockcodes.
Blockcodes heifsen so, weil jeweils einem Block mit K Eingangsbits ein Block mit
N Ausgangsbits zugeordnet wird, wobei N > K gilt. Zyklisch heifit der Code, weil
ein Rotieren des Codewortes nach links oder nach rechts wieder ein Codewort er-
gibt. Linear heifst der Code, weil er mit Hilfe der Modulo-2-Arithmetik algebraisch
beschrieben werden kann. Der im ETT Multiplex verwendete CRC ist ein systemati-
scher Code. Das heifst, daf die Eingangsfolge von Datenbits auch genauso im zuge-
ordneten Codewort wieder vorkommt. Das Codewort wird praktisch durch Anfiigen
von zusétzlichen Bits gewonnen. Diese Bits werden auch Paritybits oder Priifstellen
genannt.

Zyklische Codes zeichnen sich durch eine einfache Berechnungsmoglichkeit mittels
der Polynomarithmetik aus. Die Koeflizienten des Polynoms sind die Binérstellen
eines Vektors. Zwei Koeffizienten werden iiber die Modulo-2-Arithmetik verkniipft.
Diese Rechenweise entspricht dem Rechnen in einem finiten Feld. Die Koeffizien-
ten fiir den CRC stammen dabei aus dem Galois-Feld GF(2) mit den Elementen 0
und 1. Die Codeworte des CRC-Codes werden prinzipiell durch Multiplikation eines
Eingangspolynoms mit einem Generatorpolynom g(d) erzeugt:

f(d) = h(d) - g(d)

Der Grad von h(d) ist K und der von f(d) ist N. Daraus folgt, daf der Grad
von g(d) £ = N — K betrédgt. Bei der Dekodierung wird das erhaltene Codewort
f'(d) = f(d) + e(d) wieder durch das Generatorpolynom geteilt und kontrolliert, ob
das Restpolynom gleich 0 ist. Ist das der Fall, wird davon ausgegangen, daf kein
Ubertragungsfehler stattgefunden hat.
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Dieses Vorgehen erzeugt jedoch in der Regel keinen systematischen Code. Um die
Eingangsfolge in das Codewort zu integrieren, wird etwas anders vorgegangen. Die
Eingangsfolge wird zunichst durch Multiplikation mit d* auf die Groke eines Co-
dewortes gebracht. Anschliefsend wird das néchstgréfere Polynom gesucht, welches
durch das Generatorpolynom teilbar ist und dieses als Codewort dem Eingangspoly-
nom zugeordnet. Dieses geschieht einfach durch Division der vergroferten Eingangs-
folge d* - h(d) durch das Generatorpolynom. Der Rest der Division wird einfach zu
der vergroferten Eingangsfolge hinzuaddiert und ergibt das gesuchte Codewort.

f(d) = d* - h(d) + modulo(d® - h(d), g(d))

Die Multiplikation d* bedeutet einfach das Anfiigen von & Nullen an das Polynom.
Das Generatorpolynom fiir den im ETI-Mux verwendeten CRC lautet:

g(d): d16 + d12 + d5 + dl

Eine eindeutige Zuordnung zu Codewortern ist nicht fiir beliebig lange Eingangsse-
quenzen moglich. Das Polynom g(d) stellt zugleich das Polynom niedrigsten Grades
dar, welches ein Codewort ist, da g(d) = g(d) * 1. Das erste Polynom, welches durch
g(d) teilbar ist, jedoch kein Polynom des Codes mehr sein kann, ist d>° ' +1. Wiirde
es ein Codewort sein, miifste auch seine zyklische Vertauschung d + 1 Codewort sein.
Dieses Polynom besitzt jedoch einen geringeren Grad als g(d). Die Codewortlénge
betrigt also 21671 — 1 = 32767 Bits.

Fiir die Berechnung der CRC Paritybits sind die fiihrenden Nullen eines Eingangs-
polynoms nicht relevant. So kénnen auch kurze Eingangssequenzen effizient codiert
werden, indem die Nullen einfach {ibersprungen werden. Werden die fithrenden Nul-
len erst gar nicht iibertragen, spricht man von einer Verkiirzung des Codes.

Fiir die Berechnung des CRC’s verlangt die Spezifikation auferdem, daft das CRC-
Register zu Beginn und am Ende der Division invertiert wird. Dadurch werden die
zyklischen Eigenschaften des Codes wieder aufgehoben. Ein um ein Bit verschobe-
nes Codewort wird jetzt als Fehler erkannt. Weiterhin bestehen die Paritybits einer
Nullfolge nicht aus Nullen.

Dieser CRC detektiert:
1. alle Fehlermuster mit ungeradem Gewicht
2. alle Fehlermuster mit Gewicht< 5
3. alle Biindelfehler mit einer Lange von 16 Bit

4. wenigstens 99.997% aller Fehlerbiindel der Lange 17 und grofer
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5.4.1 Optimierung des CRC’s

Die Polynomdivision kann mittels eines riickgekoppelten Schieberegisters erfolgen.
Die bitweise Nachbildung dieses Prozesses in Software ist jedoch ineffizient. Bes-
ser ist es, eine groflere Zahl an Eingangsbits zu betrachten. Geht man der bitweisen
Nachbildung analytisch fiir mehrere Bits nach, erhélt man ein Bool’sches Gleichungs-
system, mit dem sich der néchste Zustand des CRC-Registers berechnen léfst. Diese
Funktionen lassen sich nun zum Beispiel mit Quine-McClusky-Verfahren optimie-
ren. Ebenso konnen sie in einer Tabelle nachgeschlagen werden. Die im Rahmen
dieser Diplomarbeit erstellte Bibliothek stellt diesen 16 Bit CRC mit einem tabel-
lengestiitzten Verfahren zur Verfiigung. Dabei werden die Eingaben in Blécken von
je 8 Bit verarbeitet. Die Tabelle besitzt demnach eine Gréfse von 256 Eintragen mit
jeweils 16 Bit pro Eintrag fiir den Zustand des CRC-Registers.

5.5 Pseudo Random Binary Sequence

Ahnlich wie der CRC besteht auch die PRBS aus einer Divisionsschaltung. Das
Generatorpolynom mufs in diesem Fall ein primitives Polynom sein. In der Folge der
Berechnung treten alle moglichen Polynome mit Ausnahme des Nullpolynoms als
Rest auf. Das verwendete primitive Polynom lautet

fld)=d"+d°+1

Die Periode der damit erzeugten Bitfolge betrigt 2° — 1 = 511 Bit. Neben der
Moglichkeit, die PRBS durchgehend zu berechnen, steht hier die Moglichkeit offen,
einfach die gesamte Sequenz im Speicher abzulegen. Damit ldge der Speicherauf-
wand fiir die PRBS auch bei 511 Bit. Da jedoch zum Verkniipfen eines Wortes
mit einer beliebigen Sequenz der PRBS die Wortgrenzen der Speicheraddressierung
iiberschritten werden kénnen, sind zuséatzliche Shift-Operationen nétig. Um dies zu
vermeiden, ist in der realisierten PRBS nicht eine, sondern 32 PRBS-Folgen hin-
tereinander abgespeichert. So ist jede beliebige PRBS-Sequenz auch in passenden
Wortgrenzen zur Addressierung vorhanden. Der Speicherverbrauch liegt zwar jetzt
bei 511 - 32 Bit, zum Verkniipfen eines Wortes mit der PRBS ist jetzt jedoch nur ein
Speicherzugriff und eine Exor-Funktion nétig.

5.6 Convolutional Coder und Punktierer

Der Convolutional Coder erzeugt den Fehlerschutz fiir die Ubertragung. Die Code-
rate verringert sich dabei auf 1/4. Zu jedem Eingangsbit wird eine Folge aus 4
Ausgangsbits in Folge gebildet. Um die Coderate anschlieffend wieder anheben zu
kénnen, werden nach bestimmten Mustern wieder bis zu 3 der 4 Bits verworfen.
Diesen Vorgang nennt man auch Punktieren. Die Coderate wird damit von 8/9 bis
8/32 in 24 Stufen einstellbar.

Auch hier wurde ein tabellengestiitztes Verfahren entwickelt. Betrachten wir da-
zu zuerst alle notigen Ein- und Ausgabedaten. Der Zustand des Coders ist durch die
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Abbildung 10: Berechnungsvorschrift des Faltungskodierers

sechs Schieberegister bestimmt. Versucht man, Coder und Punktierer zusammen in
einer Funktion zu realisieren, ben6tigt man den Punktierindex von 1 bis 24 dazu, die
mit 5 Bits codiert werden kénnen. Das macht zusammen schon 6+ 5 = 11 Bit. Dazu
kommt noch eine frei wihlbare Zahl an Eingabebits. Die Tabelle wéichst dabei sehr
schnell. Um die Gréfe zu reduzieren, wurde versucht, Coder und Punktierer wieder
zu trennen. Als Eingangsgroffe wurden 4 Bits gewahlt, so dafs sich die Tabelle fiir
den Convolutional Coder auf 267 = 1024 Eintrige belduft. Jeder Eintrag besitzt
aufgrund der Coderate von 1/4 eben 4-4 = 16 Bits als Ausgang. Die Tabelle fiir den
nachfolgenden Punktierer wiirde also 2'*® Eintrige benétigen. Dies 1Rt sich, da
jeweils 2 Ausgangsbits pro Eingangsbit des Codierers identisch sind, noch auf 212+5
verringern. Da das immer noch zuviel ist, wurde auf ein Tabellenverfahren verzichtet
und der Punktierer rein algorithmisch implementiert.

Ergebnis des tabellengestiitzten Verfahrens fiir den Convolutional-Coder ist eine
Veranderung des Worst-Case-Verhaltens. Die urspriingliche Funktion, die die 4 Aus-
gangsbits sequentiell berechnete, besaft den grofiten Aufwand fiir die Berechnung der
ersten beiden Ausgangsbits. Das entspricht einer Coderate von 8/16. Da die Zeit zur
Berechnung der Convolutional Coded Bits durch den Tabellennachschlag konstant
gehalten wird, hangt der Zeitaufwand fiir den neuen Coder von der Zahl der Tabel-
lennachschlége insgesamt ab. Werden 3 der 4 Ausgangsbits wieder verworfen, mufs
pro Ausgangsbit in diesem Fall ein Tabellennachschlag durchgefiihrt werden. Der
maximale Aufwand muf also bei einer Coderate von 8/9 betrieben werden. Dieses
muf bei der Untersuchung des COFDM-Modulators auf seine Echtzeitfdhigkeiten
hin beriicksichtigt werden. Insgesamt ergab sich eine Speed-Up-Verbesserung des
Worst-Case um den Faktor 1,5 fiir das tabellengestiitzte Verfahren. Fiir den Best-
Case bei einer Coderate von 1/4 ergab sich sogar ein Speed-Up von Faktor 3.
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5.7 Reed-Solomon Dekoder

Auch der Reed-Solomon-Code gehort zu den linearen, zyklischen Blockcodes. Dazu
sind RS-Codes eine Untermenge der BCH-Codes.

RS C BCH C zyklisch C linear C Blockcode

Auch der Eingangsvektor des RS-Code wird als Polynom aufgefafst. Genau wie beim
CRC lassen sich die Paritybits durch Polynomdivision berechnen. Wesentlicher Un-
terschied ist jedoch, dafs die Koeffizienten des Polynoms nicht aus dem Galois-Feld
GF(2) sondern aus GF(2%) stammen. Es werden also jeweils 8 Bit zu einem Koeffi-
zienten zusammen gefakt. Das Generatorpolynom wird als Produkt von k Wurzeln
gebildet:

5.8 FFT Fehlerberechnung

Natiirlich ist die Berechnung der FFT mit einer endlichen Registerbreite mit ei-
nem Fehler behaftet. Art und Grofse des Fehles hingen dabei von dem verwendeten
Algorithmus ab. Als Grundlage fiir die Berechnung soll vom Radix-2 Algorithmus
ausgegangen werden. Betrachten wir aber zundchst das Eingangssignal der FF'T,
wie es vom ersten Teil des COFDM-Encoders erzeugt wird. Auffillig ist hierbei, daf
alle Trager die gleiche auf Eins normierte Amplitude besitzen. Sie sind nur in der
Phase gedreht. Problematisch ist die dazu notwendige Darstellung von fracl ﬂZ)
Diese lafst sich ndmlich nicht genau darstellen. Gleiches gilt fiir Tréger, die linear
vorverzerrt wurden. Auch ihre Werte lassen sich nur fehlerbehaftet darstellen. Der
Fehler betrédgt dabei %2_3 wenn B die Zahl der Bits angibt, die fiir die Darstellung
der Zahl benutzt werden. Die einzelnen Fehler sind unkorreliert und gleichverteilt.
Mit diesem fehlerbehafteten Signal fithren wir nun die Rechenoperationen der FFT
durch. Da in jeder Stufe dieselben Rechenoperationen durchgefiihrt werden, reicht
es, den Fehler fiir eine Stufe zu berechnen und dann das Ergebnis zu verallgemei-
nern. Der Fehler ist fiir jede Rechenart individuell zu bestimmen. Es sollen dabei
Gleitkomma- und Fixkommaberechnung sowie spezielle Fixkommaverfahren unter-
sucht werden.

Als Referenz diente eine 64 Bit Floatingpoint FFT. Alle Messungen sind bei 1024
Punkten durchgefiihrt worden. Die abgebildeten Fehlerdichten stammen von 99 zu-

fallig erstellten Eingangsmustern. Die einzelnen Tréger sind dabei vergleichbar dem
COFDM-Signal mit
F(k) = £maxin £ j - maxin

moduliert worden. Die Signalamplitude des COFDM-Ausgangssignals liegt, da nur
% der Eingangstriager moduliert werden, um diesen Faktor niedriger.

Betrachten wir zunéchst eine Stufe einer Radix-2 FFT. Es findet eine komplexe
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Multiplikation statt sowie eine komplexe Addition und eine komplexe Subtraktion.
Addition und Subtraktion verdoppeln den Wertebereich des Ausgangssignals einer
Stufe. Die Multiplikation entspricht nur einer Drehung der Tréger und verdndert
den Wertebereich nicht. Die Multiplikation findet aber mit ebenfalls fehlerbehaf-
teten Werten statt. Bei diesem reinen FFT-Algorithmus ist der Wertebereich des
Ausgangssignals um den Faktor N grofer als der Wertebereich des Eingangssignals.
Dies ist vor allem bei der Fixkommaberechnung zu berticksichtigen. Es werden alle
N Werte miteinander verkniipft. Die Summe aller Operationen héngt ebenfalls von
der Zahl der Samples N ab. Der relative Fehler wird sich also fiir grofe Werte von N
auch vergrofern. Bei der Fehlermessung ging es haupséchlich darum festzustellen,
wieviele der fiir Real- und Imaginérteil verwendeten Bits nach der Berechnung noch
brauchbar sind. Deshalb sind Real- und Imaginarteil als voneinander unabhangig
betrachtet worden.

5.8.1 Floatingpoint

x10™

Fehler bei Aussteuerung 32767

-6 1 1 1 1
0 500 1000 1500 2000 2500
Samples

Abbildung 11: Fehler bei 32 Bit Floatingpoint Berechnung

Bei der Floatingpoint-Darstellung werden die Zahlen {iber Mantisse und Expo-
nent dargestellt. Die Mantisse gibt dabei die Auflosung der Zahl an, und stellt Zahlen
von 1,0 bis 1,99... dar. Der Exponent gibt an, mit welchem Faktor die Mantisse noch
zu multiplizieren ist, um die richtige Grofsenordnung zu haben. Die Auflésung ist
dabei fiir jede Zahl aus dem darstellbaren Zahlbereich gleich. Bei einer Addition
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Abbildung 12: Fehlerdichte bei 32 Bit Floatingpoint Berechnung

addieren sich die absoluten Fehler der einzelnen Zahlen. Eine signifikante Vergrofse-
rung des gesamten Fehlers findet nur statt, wenn beide Zahlen ungefahr die gleiche
Grofse besitzen. Bei einer Multiplikation addieren sich die relativen Fehler. Da die
Multiplikation jedoch immer mit einem Twiddle-Faktor stattfindet, dessen Fehler
immer in der Grofsenordnung der Auflésung liegt, kommt jedesmal nur ein prozen-
tual ungefahr gleichgrofser Fehler hinzu.

Da das Ausgangssignal um den Faktor N grofser ist als das Eingangssignal, rela-
tivieren sich auch die Fehler entsprechend. Es werden insgesamt N fehlerbehaftete
Werte zueinander aufaddiert. Dazu kommt der Fehler durch die Multiplikationen.
Der Fehler wird jedoch mit dem Faktor % bedédmpft. Insgesamt ist ein prozentua-
ler Fehler zu erwarten, der nicht grofer als das log(IV)/2 fache des Eingangssignals
ist. Bei der Messung wird der Fehler eines 32 Bit Floatingpoint-Formats mit dem
eines 64 bittigem verglichen. Die Messung fand bei N = 1024 Punkten und einem
Eingangssignal bestehend aus 1024 QPSK-modulierten Tragern statt. Es zeigt sich,
dafs der praktisch zu erwartende Fehler noch deutlich unter dem Schatzwert liegt.

5.8.2 Fixpoint

Die Rechenweise im Fixpoint-Format wurde in Kapitel 3.5 schon angesprochen. Da
beim Addieren zweier Fixpunktwerte kein Rundungsfehler entstehen kann, 1aft sich
zur Berechnung des theoretischen Fehlers ein vereinfachtes Blockschaltbild angeben.



5 IMPLEMENTIERUNG 39

30 T T T T

Fehler bei Aussteuerung 30720

-30 1 1 1 1
0 500 1000 1500 2000 2500
Samples

Abbildung 13: Fehler bei 16 Bit Fixpunkt Berechnung

Zusatzliches Rauschen wird dabei nur durch die Multiplikation erzeugt. Eine Be-
rechnung des theoretischen Fehlers findet sich in [7] und [4]. In der Praxis kann der
Fehler durch ein entsprechendes Berechnungsverfahren noch um die Halfte reduziert
werden. Dies folgt aus dem speziellen Berechnungsverfahren der komplexen Multi-
plikation. Wie in Kapitel 3.5 schon angesprochen, wird dabei das Ergebnis von zwei
reellen Multiplikationen erst geshiftet, nachdem sie zusammen aufaddiert worden
sind. Dadurch entsteht pro komplexer Multiplikation jeweils nur ein Rundungsfeh-
ler fiir Real- und Imaginérteil.

Bei dem Eingangszahlraum der FFT mufs darauf geachtet werden, dafs im Laufe
des Algorithmus kein Uberlauf stattfindet. Die maximale Signalamplitude nimmt
um den Faktor N bei der Berechnung zu. Als Eingangswerte fiir 15 Bit Register
darf deshalb maximal der Wert 15 gewédhlt werden. Das Ausgangssignal der FFT
besitzt demnach fiir die 2048 Punkte-FFT des Mode 1 die maximale Amplitude
von 2048 - 15 = 30720. Im COFDM-Encoder darf mit dem Wert 21 ausgesteuert
werden, da die Maximalamplitude wegen der Nulltrager um i niedriger liegt. Als
Maximalamplitude ergibt sich 2048-21 -Z’ = 32256. Die Fehler addieren sich von Stufe
zu Stufe. Pro Stufe kann ein Fehler von 4+5 angenommen werden. Dementsprechend

lafkt sich der Fehler fiir die 2048 Punkte FFT des Mode 1 angeben.

5.8.3 Blockgleitkomma

Bei der Blockgleitkommarechnung ist der Zuordnungsfaktor zwischen Integerzahl
und dargestellter Kommazahl nicht fest, sondern wird wihrend des Ablaufes des
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Abbildung 14: Fehlerdichte bei 16 Bit Fixpunkt Berechnung
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Abbildung 15: Fehler bei 16 Bit Blockgleitkomma Berechnung
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Algorithmus dynamisch an den bendtigten Zahlraum angepafst. Dies ist fiir den
FFT-Algorithmus kein Problem, da der Algorithmus stufenweise ablauft. Der be-
notigte Zahlraum verdoppelt sich dabei von Stufe zu Stufe. Die Anpassung der
Ausgangszahlen erfolgt entsprechend durch eine Division durch Zwei am Ende ei-
ner Stufe. Insgesamt entspricht das Ergebnis dann einer FF'T mit Vorfaktor 71 = %

Dadurch, dafs die Fehler in den ersten Stufen der FFT stark bedampft werden,
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Abbildung 16: Fehlerdichte bei 16 Bit Blockgleitkomma Berechnung

sind die am Ende entstehenden Fehler ausschlaggebend. Der Fehler liegt nach der
Fixpointmessung bei +5 pro Stufe, wird hier jedoch mit dem Faktor 2 bedampft.
Als Fehler der letzten Stufe bleibt also der Wert 2,5. Die vorhergehende Stufe ist um
den Faktor 2 beddmpft, und liefert also einen Beitrag von 1.25 Bit. Als maximalen
Fehler 1aft sich also nach 5 Stufen ein Wert von 4.84 Bit angeben. Da der Fehler der
ersten Stufe nach wenigen Dampfungen vernachléssigbar ist, sind die Diagramme
auf die 2048 Punkte FFT des Mode 1 iibertragbar.

Der maximale Zahlraum des Eingangssignals betragt bei 15 Bit Registerbreite plus
einem Vorzeichenbit -32767 bis 32767. Nach der Rechnung werden von der Q15 Zah-
lendarstellung noch 1d(32767) — ld(4,84) = 12,7 Bits fehlerfrei dargestellt. Dieses
Ergebnis wird durch die Messung bestétigt.

Der Aufwand in der innersten Schleife der FFT ist bei diesem Algorithmus jedoch
auch am hochsten. Es kommt zu jedem Operanden eine Shiftoperation hinzu. In der
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Performanceanalyse wird darauf noch einmal eingegangen werden.

5.9 FFT-Implementation

Die IFFT, die im COFDM verwendet wird, besitzt mehr Punkte, als eigentlich fiir
die Tréger notig waren. Es wird tatséchlich immer die nédchste Zweierpotenz ver-
wendet, was ungefidhr % mehr Frequenzen bedeutet. Die zusétzlichen Frequenzen
werden dabei einfach zu Null gesetzt. Da dies in einer héheren Abtastrate resultiert,
sind auch die am Anschluft an den COFDM-Encoder befindlichen Systeme wie der
[/Q-Modulator auf die erhthte Samplingrate eingestellt. Dadurch, dafs ein i der Fre-
quenzen gleich Null ist, 14t sich auch ein spezieller FFT-Algorithmus finden, der in
den ersten Stufen die Berechnung dieser Werte auslafst. Der Geschwindigkeitsvorteil
liegt jedoch nur bei etwa 10%.

Die Twiddlefaktoren der FFT konnen in einer Tabelle gespeichert werden. Die Al-
gorithmen von Texas Instruments verwenden dabei eine spezielle Technik, bei der
jeweils Real- und Imaginérteil des Twiddlefaktors gleichzeitig in ein Register geladen
werden. Dazu ist es aber notwendig, dafs die Tabelle eine komplette Sinus- und Cosi-
nusschwingung enthélt. Da die Funktionen bis auf eine Phasenverschiebung identisch
sind, kann durch eine geschickte Addressierung die Grofse um etwa die Hélfte redu-
ziert werden. Unter Ausnutzung weiterer Symmetrien 1a#t sich die Tabelle sogar auf
ein Achtel der urspriinglichen Grofe reduzieren, dies erfordert jedoch einen nicht
unerheblichen zusétzlichen Rechenaufwand.

5.10 OFDM-Signalpfadoptimierung

Eine Optimierung der FF'T ist vor allem bei der Betrachtung des Gesamtsystems
des OFDM-Generators moglich. Es soll dazu der Signalpfad hinsichtlich Optimie-
rungsmoglichkeiten untersucht werden.

5.10.1 FFT-Reversal und FFT-Shift

Der Signalpfad zur OFDM-Generierung enthilt mehrere Stufen, die das Signal ledig-
lich umordnen ohne eine Berechung durchzufiihren. Dazu gehoren das Frequenzin-
terleaving, in welchem die Trager nach der ETI-Spezifikation [1] umgeordnet werden.
Weiterhin gehort ein FFT-Shift dazu, der die negativen Trager des Basisbandsignals
auf die positive Seite spiegelt und letztlich das FF'T-Reversal, was die beim Radix-2
Algorithmus verwiirfelten Samples wieder in die richtige Reihenfolge bringt. Sinn
einer Optimierung ist es, diese Aufgaben in moglichst einem Schritt auszufiihren.
Wird als FFT-Algorithmus ein “decimation in time”-Verfahren benutzt, kann das
FFT-Reversal vor die IFFT verschoben werden. Um FFT-Reversal und -Shift auch
vor die anderen Funktionsblocke ziehen zu konnen, mufs nur beachtet werden, dafs
die zugefiihrten Signale insbesondere vom TII- und TFPR-Symbolgenerator schon in
der umgeordneten Form vorliegen. Dann kénnen alle Umordnungen zu einem Schritt
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zusammengefafst werden. Die Zuordnung der Trager zu ihrem Platz im umgeordne-
ten Spektrum geschieht am effizientesten iiber eine Tabelle.

broken Image

Abbildung 17: Blockschaltbild des realisierten OFDM-Symbolgenerators. Der endgiilti-
gen Version fehlt noch eine Vorverzerrung.

5.10.2 Digitale Differentielle Modulation

Das Signal verléafst im Prinzip bei QPSK-Codierung der einzelnen Tréger den Bereich
des Digitalen. Es wird anschlieffend differentiell moduliert und dann der IFFT zuge-
fithrt. Bei einer linearen Vorverzerrung des Signals im Frequenzbereich mufs dieser
Schritt hier beriicksichtigt werden. Um den Rechenfehler moglichst gering zu halten,
muf das wertkontinuierliche Signal moglichst weit am Ende des Graphen eingefiihrt
werden. Es ist moglich, die Einfiihrung von Floatingpoint-Werten bis hinter die dif-
ferentielle Modulation zu verschieben. Die Differenzkodierung der einzelnen Trager
findet dabei noch digital statt. Da das differentielle Symbol pro Triager nur acht mog-
liche Phasen besitzt, léfit es sich mit drei Bit pro Tréger zudem sehr platzsparend
darstellen. Im Gegensatz dazu féllt ein wertkontinuierliches Signal mit beispielsweise
16 Bit jeweils fiir Real- und Imaginarteil ins Gewicht.

Die Berechnung der Phasendifferenz lafst sich ebenfalls optimieren. Die kontinu-
ierliche Berechnung erfordert hier eine komplexe Multiplikation bestehend aus vier
reellen Multiplikationen und zwei Additionen. Es soll an dieser Stelle angemerkt
werden, daf es zu der komplexen Multiplikation,

(a+jb) - (c+jd) =R+ jI
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broken Image

Abbildung 18: 8 phasiger Stern des Ubertragungskanals. Angegeben die Kodierung der
4 Phasen der QPSK-Symbole. Die anderen Phasen entstehen durch die
differentielle Modulation.

R=(a-c—b-d)
I=(a-d+b-c)

die wie hier vier Multiplikationen, eine Addition und eine Subtraktion erfordert, eine
alternative Berechnungsmoglichkeit gibt, die nur drei Multiplikationen, jedoch fiinf
Addition benoétigt.

r=a-(c—d)
y=a+b
z=a—0

R=z-d+=x

I=y-c—x
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6 Ergebnisse

6.1 Test des Systems
6.1.1 Griinde fiir die Entwicklung eines Servers

Eines der Hauptprobleme moderner Softwareentwicklung ist die Validierung dersel-
ben. Fiir den COFDM-Modulator stehen dafiir bestehende Losungen in der MAT-
LAB Programmierumgebung bereit, deren Berechnungen blofs mit den Ausgaben des
neuen Modulators verglichen werden miissen. Natiirlich lassen sich die Ausgaben bei-
der Programme in eine Datei umleiten und anschliefend miteinander vergleichen.
Ein nicht so hohes Datenaufkommen und eine damit auch hohere Geschwindig-
keit erreicht eine direkte Anbindung des C-Modulators an die Programmiersprache
von MATLAB. Diese unterstiitzt jedoch nur einzelne C Funktionsaufrufe. Da der
Modulator im Prinzip nur ein einfacher Automat ist, kann er natiirlich in einzel-
ne Funktionsaufrufe unterteilt werden. Dabei miissen aber alle Zustandsvariablen,
die verdnderlich sind, zuriickgegeben und beim néchsten Aufruf wieder eingelesen
werden. Das verkompliziert die Prozedur und macht sie vor allen Dingen von der spe-
zifischen Implementation der Funktionen abhéngig. Um dennoch eine Verbindung
beider Modulatorprogramme zu erreichen, ist eine Client-Server Losung entwickelt
worden. Die Daten werden dabei iiber das Filesystem iibertragen. Jedoch lassen sich
die beiden Programme einfrieren oder in einen beliebigen Zustand versetzen.

Die Basisfunktionen, die den Kern des COFDM-Modulators darstellen, werden dabei
an ein Userinterface herangefiithrt und so dem Benutzer individuell zur Verfiigung
gestellt. Die Vorteile liegen auf der Hand. Es ist so mdglich, den COFDM-Encoder
einzelne Zwischenschritte abarbeiten zu lassen und den jeweiligen Zustand des En-
coders zu priifen. So lassen sich nicht nur die Endergebnisse beider Programme,
sondern auch Zwischenergebnisse, wie zum Beispiel das digitale Symbol oder das
Symbol im Frequenzbereich, auf ihre Korrektheit hin iiberpriifen. Ebenfalls kann im
Fehlerfall auch gleich der Istzustand der Software iiberpriift werden, was Hinweise
auf Ort und Art des Fehlers gibt.

Insgesamt hat sich der COFDM-Server bei dieser Aufgabe als wertvolles Entwick-
lungswerkzeug erwiesen, dessen Einsatz den Abgleich beider COFDM-Versionen un-
gemein erleichtert hat. Auch schwierige Fehler, wie ”"dangling pointers”, konnten
schrittweise eingekreist werden. Die Zeit fiir das Debugging der Software hat sich
drastisch verringert. Auch die Struktur der Software hat sich verbessert. So kann auf
aufwendige Debug-Routinen oder uniibersichtliche Debug-Ausgaben im Kerncode
des Projektes verzichtet werden. Ausgaben und Debugging stehen sauber getrennt
in den Kommandofunktionen des Servers.

Zusammenfassend léft sich sagen, dafs die Entwicklung einer Einzelschrittsteuerung
per Kommandozeile fiir alle Software, die nicht standardméfig iiber eine Benutzer-
schnittstelle verfiigt, ein lohnender Schritt ist. Darunter fallen Bibliotheken, Signal-
und Datenverarbeitung.
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6.1.2 Aufbau des Servers

Basis des Datentransfers vom und zum Server ist das Filesystem des Betriebssy-
stems. Der Server fillt damit nicht unter das Prinzip der Hardwareunabhéngigkeit,
sondern ist auf die Unterstiitzung des Betriebssystems angewiesen. Dies ist jedoch
nicht nachteilig. Der Server soll ja nicht auf einer beliebigen Zielplattform laufen,
sondern ist als Zusatz zu verstehen. Unterstiitzt werden sowohl Sun wie auch PC.
Wichtig ist vor allem, dafs das Betriebssystem Pipes unterstiitzt wird.

Die Ein- und Ausgabe der Daten erfolgt iiber spezielle Dateien, sogenannte FI-
FO’s. Diese haben den Vorteil, daft gelesene Daten gleich wieder geldscht werden,
so dafs der Speicherverbrauch der Dateien gering ist. Der Name stammt von first
in, first out” und beschreibt das Verhalten des FIFO’s bei Erhalt und Anforderung
von Daten. Die Daten, die den FIFO als erste erreichen, sind auch die ersten, die
bei einem Lesezugriff auf den FIFO wieder ausgegeben werden. Sind keine Daten im
FIFO vorhanden oder existiert kein Verbraucher, der lesend auf den FIFO zugreift,
werden die Prozesse automatisch vom Betriebssystem blockiert. Das Warten erzeugt
dabei keine Prozessorlast.

Ein Client greift also schreibend auf die Kommandopipeline zu und teilt hieriiber
seine Befehle an den Server mit. Diese Kommandopipeline muf dem Client allerdings
beim Start namentlich bekannt sein. Man spricht hierbei von einem Well-Known-
FIFO. Prinzipiell reicht es aus, wenn sich der Client hieriiber beim Server anmeldet
und hierbei die Namen der im folgenden verwendetetn Ein- und Ausgabedateien
bekanntgibt. So konnten auch unabhéngige Clients individuell bedient werden. Der
COFDM-Server ist jedoch auf sequentielle Abarbeitung ausgelegt. Wenn mehrere
Clients ihre Befehle an den COFDM-Server senden, werden sie vom Betriebssystem
sequentialisiert und in dieser Reihenfolge abgearbeitet. Die Ergebnisse hdangen dabei
von der Summe aller gesendeten Befehle ab. Sind nicht alle Eingaben aufeinander
abgestimmt, kann das zu Fehlern fiihren.

Die Eingaben der Clients werden auf einfache Weise verarbeitet. Beim Parsen des
Textes werden die Eingaben in einzelne Worte, sogenannte Tokens, unterteilt. Al-
le Tokens sind einfache Zeichenfolgen, die durch Leerzeichen voneinander getrennt
sind. Die Art des Befehls ist durch das erste Wort bestimmt. Es wird in einer Tabel-
le gesucht. Anschliefend wird in den entsprechenden Programmcode verzweigt. Die
Grammatik, die damit mdoglich ist, entspricht einer L1 Grammatik. Das von links
nach rechts jeweils nichste Zeichen bestimmt dabei, welchem Zweig nachgegangen
wird. Wird eine Ubereinstimmung gefunden, ist der Befehl eindeutig gefunden. Da-
durch, daf ein Befehl durch seinen linken Anfang erkannt wird, kann der Rest des
Kommandos entfallen, sobald der Befehl eindeutig ist. Bei Mehrdeutigkeiten ver-
zweigt der Server zum ersten passenden Eintrag in seiner Tabelle.

Anschliefsend werden die Zeichenketten an den Interpreter iibergeben. Erst hier wird
den Eingaben ein Sinn zugeschrieben. Der Interpreter mufs zugleich priifen, ob Ein-
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Server

FIFO Well-Known FIFO
Client 1 FIFO Client N
Client 1 e e0e0 Client N

Abbildung 19: Abbildung eines Servers mit ausgezeichnetem FIFO zum Datenempfang
und clientspezifischen Riickkanélen

gaben wie Zahlen oder Filenamen in korrekter Syntax stehen und andernfalls eine
Fehlermeldung ausgeben. Dadurch, daf die Befehle in einer Tabelle gehalten werden,
lafst sich der Interpreter sehr leicht durch neue Kommandos ergénzen. Es miissen nur
der Name des Befehls und der dazugehorige Funktionsaufruf in der Tabelle ergéanzt
werden.

6.2 Performanceanalyse

Bei der Performanceanalyse geht es darum, eine Aussage dariiber zu treffen, ob die
gegebenen Aufgaben von dem Zielprozessor in der vorgeschriebenen Zeit bearbeitet
werden kénnen. Dazu soll zundchst die maximale Last, die dem Prozessor zugemutet
wird, spezifiziert werden.

Die grofte Struktur, die dem DAB-Signal inne ist, ist der DAB-Rahmen. Es soll die
Konfiguration gesucht werden, die fiir einen Rahmen den groften Arbeitsaufwand
verursacht. Der Aufwand bei der Kanalkodierung ist dabei nicht vom DAB-Mode
abhéngig. Der aufwendigste DAB-Mode bestimmt sich damit aus der FFT, die fiir
Mode 1 proportional Symbolzahl - FFT — Aufwand = 77 - 2048 - 11 fiir 96ms Zeit-
signal ist. Fiir Mode 4 mufl beispielsweise ein Aufwand proportional 771024 - 10 fiir
48ms Zeitsignal berechnet werden, also Faktor % weniger. Mode 1 ist also der zu
betrachtende Fall. Fiir die Kanalkodierung wurde bereits angegeben, dafs die mini-
male Koderate von 8/9 den groften Aufwand erzeugt. Der entsprechende minimale
Fehlerschutz findet sich bei einem Protectionlevel von 5. Der Worst-Case kann je-

doch auch aus einem beliebigen Profil interpoliert werden.

Der DAB-Rahmen des Mode 1 besteht aus 77 Symbolen: Einem Nullsymbol, einem
TFPR-Symbol, 3 Symbolen des “Fast information Channels” (FIC) und 72 Symbo-
len des “Main Service Channels” (MSC). Weiterhin sind fiir jeden ETI-Rahmen die
CRC-Checks einzurechnen. In Mode 1 sind 4 ETT-Rahmen zur Erzeugung des DAB-
Rahmens notig. Jeder besitzt einen Header-CRC und einen Body-CRC. Zusammen
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sind also 8 CRC-Berechnungen fiir Mode 1 nétig. Dazu kommt eine eventuelle Re-
konfiguration, deren Auswirkungen vom Modul <time config> berechnet werden.
Insgesamt mufs dieses Modul fiir jeden ETI-Rahmen einmal aufgerufen werden, je-
doch wird sie ohne vorliegende Rekonfiguration nach wenigen Zyklen abgebrochen.
Eine Rekonfiguration liegt technisch jedesmal beim Start des Programms vor.

Fiir den Nachweis der Funktionstiichtigkeit bedarf es nicht einer vollsténdigen An-
passung an das netzwerkabhéngige ETI-Format. Zur Messung der Geschwindigkeit
reicht es aus, den Reed-Solomon-Dekoder zu benchmarken, da er der mit Abstand
aufwendigste Prozef bei der Netzwerkanpassung (NA) ist. Die vollstdndige Anbin-
dung des ETI-NA Protokolls ist im Rahmen der Arbeit nicht mehr erfolgt. Die
Geschwindigkeit des RS-Kode ist jedoch auch auferhalb des COFDM-Modulators
mefkbar und kann auf einen DAB-Rahmen hochgerechnet werden. In der Tabelle
ist der Reed-Solomon-Dekoder und die von ihm aufgerufene Routine <berlekamp>,
die zum Finden des Fehlerpolynoms benutzt wird, enthalten. Fiir das Profilen des

‘ Algorithmus ‘ calls ‘ Zyklen/call ‘ Zyklen ‘

<overhead > 1 235 235
<berlekamp> 1 17990 | 17990
<rs correct> 1 269366 | 269366

Tabelle 1: Profiling Tabelle mit den Zyklen zur Dekodierung eines Reed-Solomon-Codes
der Lénge 240 mit 14 Paritybytes und 7 fehlerhaften Bytes

Programms ist ein eigenes Modul in der COFDM-Bibliothek vorgesehen. Dabei muf
beriicksichtigt werden, daf der Aufruf der Funktionen und die Abfrage der CPU-
Zyklen selber Rechenzeit benotigt. Die ungefihre Grofe dieses Overheads wird durch
die <overhead>-Zeile im Benchmarkprofil angegeben. Sie ist gering, so dafs sie prin-
zipiell vernachlassigt werden kann. Zu beachten ist jedoch, dafs die Funktionen ver-
schachtelt sein konnen. So erhoht sich der Fehler fiir die aufrufende Funktion pro-
portional zur Anzahl der <calls>.

Interessiert man sich jedoch trotzdem fiir die genaue Zyklenzahl einer Funktion,
kann man die Messung durch Herausrechnen des Overheads verfeinern. Jeder Auf-
ruf (call) einer Funktion, der in der Tabelle angegeben ist, verursacht einmal den in
<overhead> angegebenen Zyklenfehler. Der Overhead ergibt sich aus zwei Aufeinan-
derfolgenden Profilingaufrufen, zwischen denen kein weiterer Programmcode steht.
Prinzipiell ist diese eine Messung nicht ausreichend, um den verursachten Fehler
genau herauszurechenen. Es miifste auch der durch einen verschachtelten Aufruf der
Profilingfunktionen verursachte Fehler gemessen werden. Fiir die Angabe einer Gro-
fenordnung reicht es jedoch aus. Der wirkliche Fehler kann doppelt so grof sein,
wie der geschatzte. Die korrigierte Messung wird also immer noch zu viele Zyklen
anzeigen.

Die Messung der Performance wurde zunéchst auf den Entwicklungsplattformen Sun
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‘ Algorithmus ‘ Zyklen ‘

Radix-2 20815
Radix-4 13228

Tabelle 2: Angabe der Zyklenzahlen fiir 1024 Punkte FFT’s von TI (ohne reversal, 16
Bit integer)

und Linux durchgefiihrt. Dort zeigte sich vor allem die Relation der Geschwindig-
keiten von den Funktionen zueinander. Da die Simulationszeit fiir 10 Symbole DAB-
Signal bei etwa 8 Stunden lag, fanden Optimierungen und Debugging ausschlieflich
auf den Entwicklungsplattformen statt. Optimierungen wurden dabei vornehmlich
auf algorithmischer Ebene durchgefiihrt. Es ist sicher noch Spielraum fiir Verbesse-
rungen vorhanden. Dies bezieht sich zum einen auf die Betrachtung der Befehlsebene
von C, zum anderen konnte man direkt fiir die Zielplattform optimieren und dabei
auf Assemblerebene wechseln.

Der erzeugte Assemblercode ist einsehbar. Es zeigt sich, dafs der Compiler gut op-
timierten sequentiellen Code erzeugt. Der Parallelitdtsgrad ist jedoch durchgehend
gering und liegt bei ca. 1,5 Befehlen pro Zyklus. Der maximale Parallelitatsgrad der
Zielplattform liegt bei 8. Bei handoptimiertem Assemblercode liegt der Parallelitéts-
grad bei bis zu 6,3 Befehlen, wie sich aus Beispielen von Texas Instruments ablesen
lakt. Daraus lafst sich absehen, daf ein theoretischer Speed-Up mit dem Faktor 4
durch eine bessere Ausnutzung des Prozessors noch moglich ist. In der Praxis wird
man nur die innersten Schleifen und die aufwendigsten Algorithmen per Hand op-
timieren. Aus den Benchmarks ergibt sich, daf auch hier noch ein Speed-Up von
Faktor 3 zu erwarten ist.

Auffallig bei den Benchmarks ist die herausragende Position der Fouriertransfor-
mation. Sie zeigt sich auch nach allen Verbesserungsversuchen als bestimmendes
Element der Performance des gesamten Algorithmus. Es wurden deshalb auch meh-
rere Versuche unternommen, diese Funktion zu optimieren. Die FFT ist jedoch aus
algorithmischer Sicht eine tief geschachtelte, relativ kurze, mathematische Funkti-
on. Versuche, die Berechnungszeit auf dieser Ebene zu beschleunigen, erreichen einen
Speed-Up von beispielsweise Faktor 1,5 fiir den Einsatz einer Radix-4 FF'T. Wie be-
reits beschrieben, l&ft sich ein wesentlich grofserer Speed-Up durch Parallelisierung
und spezielle Hardwareanpassung auf Assemblerebene erreichen. Um eine Abschét-
zung fiir eine handoptimierte FFT-Routine angeben zu kénnen, wurden Beispiele
von Texas-Instruments verwendet.

Texas Instruments hat selber hochoptimierten Assemblercode fiir eine FFT zur Ver-
fiigung gestellt. Mit diesem lafst sich abschétzen, wieviel Zeit fiir die FFT auf dieser
speziellen Plattform veranschlagt werden muf. Die Zyklenzahlen wurden fiir die
Radix-4 FFT iiberpriift. Eine Fehlermessung ist jedoch nicht erfolgt. Fiir die 2048
Punkte FFT des Mode 1 14ft sich eine minimale Zyklenzahl fiir einen Mix-Radix-
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‘ Algorithmus ‘ calls ‘ Zyklen/call ‘ Zyklen ‘
<overhead > 1 241 241
<conv_ punct> 19 10942 207905
<ifft> 11 683811 | 7521921
<mst symbol > 7 85897 601281
<fic symbol > 3 61236 183708
<interleaver> 9 20226 182038
<time config> 1 110679 110679
<symbols complete> 11 1085831 | 11944141
<crc_ cale> 8 9229 73834
<dqpsk> 10 36438 364380
<fft reversal > 11 289116 | 3180276

Tabelle 3: Tabelle mit den Zyklenzahlen, wie sie von dem Profilingmodul der COFDM-
Bibliothek ausgegeben werden.

Algorithmus von ca. 34000 Zyklen veranschlagen. Nimmt man den den Radix-2 Al-
gorithmus als Basis, sind etwa 40000 Zyklen zu veranschlagen. Die innerste Schleife
des Algorithmus hat eine Lange von 4 Zyklen. Sollten Verinderungen am Algorith-
mus notig sein, ist eine eventuelle Verdopplung der Zyklenzahl nicht auszuschliefsen.
In diesem Fall 1afst sich die Zyklenzahl mit 80000 Zyklen angeben. Zusammenfas-
send laft sich sagen, dafs fiir eine Fouriertransformation im Mode 1 nicht mehr als
100000Zyklen veranschlagt werden miissen. Mit dieser Aussage léfit sich das Ergeb-
nis des Benchmarks neu bewerten.

Anhand der Benchmarks lafst sich ausrechnen, daf fiir den Algorithmus ohne FFT
etwa 100000 Zyklen im Worst-Case benotigt werden. Zusammen mit der FFT wer-
den also 200000 Zyklen benoétigt, was einer Zeit von 1 ms fiir ein Worst-Case Symbol
entspricht. Das entspricht hochgerechnet 77ms fiir die Berechnung aller 77 Symbole
eines DAB-Rahmens. Es darf also gesagt werden, daf es technisch moglich ist, den
COFDM-Encoder auf einem TMS320C6201 in Echtzeit zu implementieren! Die ver-
bleibende Zeit von maximal 19ms reicht jedoch nach dem jetzigen Stand der Arbeit
nicht mehr fiir den Reed-Solomon-Dekoder aus. Mit den Aussagen iiber die ver-
bliebenen Optimierungsmoglichkeiten darf man jedoch optimistisch sein, daft nach
einer Beschleunigung der Kernroutinen auch diesem genug Zeit zur Verfiigung ge-
stellt werden kann.

In der Tabelle 3 sind die wichtigsten Funktionen mit ihren Zyklenzahlen angegeben.

In Kapitel 5.10 wurde darauf hingewiesen, daft sich das FFT-Reversal unter be-
stimmten Bedingungen mit dem Frequenzinterleaver zusammenfassen lafst. Dadurch
kann diese Funktion vollig entfallen. Es wird davon ausgegangen, dafs diese Zusam-
menfassung stattfindet, sobald ein endgiiltiger FFT-Algorithmus gefunden worden
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ist. Diese Funktion wurde deshalb nicht hinsichtlich der Geschwindigkeit optimiert.

Fiir die Zyklen eines DAB-Rahmens in Mode 1 sind zu rechnen: 3 FIC-Symbole, 72
MST-Symbole, ein Null- und ein TFPR-Symbol, entsprechend 77 IFFT’s, 4 CRC’s
fiir die ETI-Header, 4 CRC’s fiir den ETI-Body, eine Rekonfiguration und insge-
sammt 36 Reed-Solomon-Codes. Besonders IFFT und RS-Code verbrauchen die
meiste Rechenzeit. Die Benchmarks sind mit den geschwindigkeitsoptimierten Algo-
rithmen auf dem Simulator durchgefiihrt worden. Verbesserungen kénnen sich noch
durch die nédchste Generation des Compilers ergeben.

6.3 Speicheranalyse

‘ Modul ‘ Speicherplatz (Bytes) ‘
Convolutional Coder 2240
Protectionlevel Tabellen 750
CRC 512
IFFT 10240
ETI-Demuxer 512
TFPR-Symbol Generator 218
TII-Symbol Generator 76
OFDM Generator 5120
Reed-Solomon 512
Symbol Control 408
Time Interleaver 52096
Time Configuration 3460
Time Symbol 21248
4x ETI 24576
printtools* 200
profile* 1000

| Gréke des EXE-Files 201080 |

Tabelle 4: Tabelle mit dem Speicherverbrauch der einzelnen Module fiir den
TMS320C6201

Die Algorithmen sind iiberwiegend auf Rechenzeit optimiert. Der von den Al-
gorithmen bendétigte Speicher ist in Tabelle 4 wiedergegeben. Der Speicherplatz ist
dabei jedesmal auf den grofsten Bedarf im Mode 1 ausgelegt. Dadurch wird im
gesammten Programm keine dynamische Speichervergabe benétigt. Die Algorith-
men lassen sich auch hinsichtlich des Speicherverbrauchs optimieren, es lassen sich
jedoch nur geringe Mengen sparen. Das Gros des Speichers benotigt der Time In-
terleaver. Dieser Speicher lafst sich nicht weiter reduzieren. Das gleiche gilt fiir den
Platz, den das Symbol im Zeitbereich benétigt (Time Symbol) und den Platz fiir die
ETI-Eingabedaten. Der IFFT-Algorithmus benétigt fiir die Tabelle mit den Twidd-
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lefaktoren den néchstgrofseren Speicherblock. In der Tabelle sind 5/4 der Periode
einer Sinusschwingung abgespeichert. Aufgrund der enthaltenen Symmetrien lafst
sich hier der Speicher prinzipiell noch auf 1/4 reduzieren. Die IFFT ist jedoch auch
einer der aufwendigsten Algorithmen. Zusétzliche Operationen kénnen hier die Re-
chenzeit empfindlich in die Héhe treiben. Alle anderen Module benétigen dazu nur
geringe Mengen an Speicher. Es lassen sich zusammen ungefdhr 10KByte einsparen.
In der Grofe des Executables sind Heap, Stack, Code und Daten mit berticksichtigt.
An der Rechnung fehlt allerdings noch ein Speicherbereich fiir I/O-Buffering, der
fiir die Benchmarks nicht benétigt wurde. Ein Speed-Up der Algorithmen ist erst
moglich, wenn deutlich mehr Speicher zur Verfiigung gestellt wird.

Der TMS320C6201 ist mit 2x64KByte Speicher ausgeriistet, einmal fiir den Code,
das andere mal fiir Daten. Dieser Speicher reicht nicht fiir den COFDM-Modulator
aus. In dieser Version muft der Prozessor auf externen Speicher zuriickgreifen, der
jedoch zusétzlich Wartezyklen erzeugt. Es sind jedoch auch Versionen des Prozes-
sors geplant, die mehr Speicherplatz besitzen. Mit der doppelten Menge an Speicher
kénnte man auskommen.
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7 Zusammenfassung/Ausblick

Im Rahmen der Diplomarbeit ist eine COFDM-Modulatorsoftware in der Program-
miersprache C entwickelt worden. Die grundsétzliche Funktion wurde durch den
Vergleich mit anderen Losungen gezeigt. Auf vollstindige Fehlerprotokolle wurde
jedoch verzichtet, da dies nicht Hauptziel der weiteren Entwicklung sein sollte.

Bei der Erstellung der Software wurde Wert auf Modularisierung gelegt. Einzelne
Komponenten sind leicht austauschbar. Im Rahmen der Optimierung sind Module
neu geschrieben worden. Hierbei wurde das Konzept getestet, ob es die Anforde-
rung der dynamischen Entwicklung erfiillt. Weiterhin wurden hardwareabhingige
FFT-Module eingebunden, um den néchsten Schritt zur Anpassung an eine speziel-
le Hardware zu demonstrieren.

Fiir die Ausgangsdaten ist eine Genauigkeit von 12 Bit seitens Bosch gefordert wor-
den. Daraus ergibt sich die Wortbreite, mit der die Algorithmen berechnet werden
miissen. In der Arbeit ist gezeigt worden, daf 15 Bit Genauigkeit zur Berechnung
der FF'T ausreichend sind.

Die erstellten Algorithmen sind auf die Zielplattform des TMS320C6201 iibertra-
gen worden. Dort wurden Untersuchungen zur Laufzeit und zum Speicherverbrauch
durchgefiihrt. Hinsichtlich der Geschwindigkeit lafst sich sagen, dafs die Kernrouti-
nen des COFDM-Modulators in Echtzeit ausgefiihrt werden kénnen. Dazu bedarf
es lediglich einer Anpassung der FFT in Assembler. Um noch zusétzliche Aufgaben,
wie die Netzwerkadaption zu bewaltigen, miissen weitere Teile des Programms durch
Assemblerroutinen ersetzt werden.

Um aus dem Konzept ein voll einsetzbares Produkt zu entwickeln, miissen die
noch unvollstandigen Module fiir die Netzwerkadaption erganzt werden. Ebenfalls
soll noch eine lineare Vorverzerrung im Frequenzbereich implementiert werden. Der
Assembler-FFT-Algorithmus muf in einen “dezimation in time™Algorithmus um-
geschrieben und an das Blockgleitkommaverfahren angepaftt werden. Letztendlich
miissen [/O-Routinen fiir die Ein- und Ausgabe und Synchronisation auf der Ziel-
plattform erstellt werden.
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