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Diplomarbeitsthema

Entwicklung einer plattformunabhängigen,
echtzeitfähigen COFDM-Modulator-Software

Problemstellung:
Das europäische digitale terrestrische Hörfunksystem (DAB) benutzt das Multiträger-
Modulationsverfahren COFDM (coded orthogonal frequency division multiplex).
Die COFDM-Modulation findet dabei direkt am Senderstandort von sogenannten
COFDM-Modulatoren statt. Allerdings ermöglichen neue Technologien mit immer
höheren Integrationsgraden mittlerweile wesentlich kompaktere Konzepte für die Im-
plementierung von COFDM-Modulatoren. Die Ergebnisse der Diplomarbeit sollen
als Basis für ein zukunftssicheres Konzept für eine neue Generation von COFDM-
Modulatoren dienen:

Zielsetzung:
Es soll eine Software für einen COFDM-Modulator entwickelt werden. Bei der Struk-
turierung der Software soll darauf geachtet werden, daß sie allgemeinen Ansprüchen
von Signalprozessoren wie begrenztem Speicherplatz und Rechenzeitoptimierung ge-
nügen kann. Das bedeutet, es muß eine Struktur gefunden werden, die hierarchisch
so angelegt ist, daß durch Eingriffe in die Kodierung (prozessorspezifischer Kode,
Assembler) an wenigen Stellen hoher Rechenzeitgewinn erzielt werden kann. Au-
ßerdem müssen Algorithmen gefunden werden, die aufgrund ihrer mathematischen
Eigenschaften bereits günstige Voraussetzungen für eine effiziente Programmierung
mitbringen.

Aufgabenstellung:

• Unter UNIX ist ein Softwaredesign zu erstellen, das von der Zielhardware
und dem Betriebssystem unabhängig ist. Dabei ist als besonderer Aspekt die
Testbarkeit des Systems zu beachten.

• Es sin bezüglich der Rechenzeit optimierte Algorithmen zu entwickeln.

• Das Design ist in einer Programmiersprache (vorzugsweise C,C++) auf einem
UNIX-System zu implementieren.

• Die Portierbarkeit ist auf einem anderen Zielsystem nachzuweisen (vorzugs-
weise Signalprozessor)

• Anhand von Performance-Untersuchungen ist festzustellen, inwieweit das Sy-
stem Echtzeitanforderungen genügt. Es sin Vorschläge für eine Verbesserung
der Performance zu erarbeiten.



Hiermit erkläre ich, daß ich diese Arbeit selbständig angefertigt und keine Hilfs-
mittel als die angegebenen benutzt habe.

Hannover, den 5. Mai 1998
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Abkürzungsverzeichnis

BCH Fehlerkorrigierender Code nach seinen Entdeckern Bose,
Chaudhuri, Hocquenghem

CIF Common Interleaved Frame: Eine Rahmenstruktur in-
nerhalb des COFDM- Enkoders.

COFDM “coded orthogonal frequency division multiplex”: das in
DAB verwendete Modulationsverfahren

CRC “cyclic redundancy check”: Fehlererkennungsverfahren,
das auf zyklischen Codes basiert

DFT diskrete Fouriertransformation
DSP Digitaler Signalprozessor: Microprozessor, der auf hohe

mathematische Verarbeitungsgeschwindigkeit optimiert
ist

ETI Ensemble Transport Interface: Eine Schnittstellenbe-
schreibung für die Datenübertragung zwischen Service-
providern und dem Senderstandort.

FFT “fast fourier transformation”: schnelle Fouriertransfor-
mation

FI Fraktional Integer: Datenformat zur Darstellung von ge-
brochenen Zahlen mittels Integerzahlen.

FIC Fast Information Channel: Übertragungskanal innerhalb
des DAB-Multiplex, für den eine besondere Kanalkodie-
rung angewendet wird.

FIFO “first in, first out”, hier: Dateityp des Betriebssystems
GNU “Gnu’s Not Unix”: Name eines US-amerikanischen Pro-

jektes, das ein kostenfreies, UNIX-artiges System ent-
wickelt

GF(q) Galois Feld mit q Elementen
MSC “main service channel”: Datenkanal des ETI-Protokolls
MST “main stream”: Datenkanal im DAB-Rahmen
PRBS “pseudo random binary sequence”: pseudozufällige Bit-

folge mit fester Periode
Q15 Zahlendarstellung im Fraktional-Integer-Format mit 15

Bit plus einem Vorzeichenbit
QPSK “quad phase shift keying”: Modulation der einzelnen Trä-

ger
RS-Code Reed-Solomon-Code: Fehlerkorrekturverfahren, das auf

der Mathematik in finiten Feldern basiert
TFPR “transmission frame phase referenz”: das zweite Symbol

im DAB-Rahmen, welches die Feinsynchronisation er-
möglicht.

TII “transmitter identifikation information”: Symbol, das an-
stelle des Nullsymbols gesendet wird und den Sender
identifiziert.
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1 Einleitung

1.1 Motivation

Im Rahmen der Entwicklung eines Senders nach der Eurekaspezifikation zu digita-
lem Radio, DAB, bei der Robert Bosch Multimedia Systeme Gmbh&CoKg sollte
der bestehende COFDM-Encoder überarbeitet werden. Die Gründe dafür sind ei-
ne weitere Verkleinerung des Sendersystems sowie neue Verfahren bei der digitalen
Vorverzerrung des Signals.

Ziele der erneuten Entwicklung einer Software sind:

1. die Verifikation der bestehenden Systeme und eine Verbesserung hinsichtlich
der Wartbarkeit,

2. eine Grundlage für die Entwicklung einer zukünftigen neuen Hardwaregenera-
tion des COFDM-Modulators zu schaffen,

3. Testumgebung hinsichtlich neuer Algorithmen zu erhalten,

4. eine Testumgebung hinsichtlich der Tauglichkeit einer möglichen Hardware für
den COFDM-Modulator zu bekommen.

1.2 Ausgangspunkt der Weiterentwicklung

Die Arbeit fußt auf bereits funktionsfähigen Lösungen für einen COFDM-Encoder.
Diese sind jedoch alle unter anderen Gesichtspunkten entwickelt worden. Ziel der
erneuten Aufgabenstellung soll es sein, einen Ausgangspunkt für weitere Entwick-
lungen zu bilden, der den Stand der Technik wiederspiegelt.

Zum einen existiert eine Urversion in der Programmiersprache C. Diese basiert je-
doch auf einer vorläufigen Spezifikation des Übertragungsverfahrens. Die Software
ist deshalb besonders unter den Gesichtspunkten der Erweiterbarkeit entwickelt wor-
den. Seit der Erstellung der Software sind viele Änderungen an dem Übertragungs-
standard vorgenommen worden. Zweck dieser Software war es, den Aufwand des
Modulationsverfahrens näher zu bestimmen und eine erste fehlerfreie Umsetzung
vorzustellen. Der größte Unterschied zu der neuen Software ist jedoch die Forderung
nach Echtzeitfähigkeit und der Anspruch, direkt auf einen beliebigen Prozessor über-
tragen werden zu können.

Zum anderen exisitiert eine MATLAB-Version des COFDM-Encoders, der weitestge-
hend den EU-Spezifikationen entspricht. Diese dient im wesentlichen als Ausgangs-
punkt für die Simulation des gesamten Verfahrens inklusive Übertragungsstrecke und
Dekoders innerhalb von Matlab sowie für die Erzeugung von speziellen Testsignalen
und Meßreihen. Diese MATLAB-Version ist deutlich langsamer in der Berechnung
und ist nicht effizient auf Hardware zu übertragen.
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Letztlich existiert ein vollständiger Hardwaremodulator, der auf der Basis von 5 Si-
gnalprozessoren arbeitet. Die Software ist für jeden Prozessor mit grossem Aufwand
von Hand in Assembler geschrieben und optimiert worden. Dabei wurden vor allem
spezielle Hardwareoptionen ausgenutzt und Fehler in den selbigen umgangen. Die
Software ist damit hochgradig systemspezifisch und nur sehr schwer zu warten. Eine
Übertragung auf andere Hardware ist unter marktwirtschaftlichen Gesichtspunkten
nicht sinnvoll.

1.3 Aufbau des Textes

Zunächst soll ein Überblick über das Übertragungsverfahren von DAB gegeben wer-
den. Dabei wird die COFDM-Modulation besonders hervorgehoben. Im Anschluß
daran werden theoretische Grundlagen erörtert, die für das Erstellen der Arbeit
herangezogen worden sind. Danach wird eine kurze Analyse des COFDM-Encoders
gegeben, die auch die Basis für die Implementierung darstellt. Im Kapitel über die
Implementierung werden einige Details aus der Umsetzung des COFDM-Encoders
vorgestellt. Danach werden die Ergebnisse aus der Untersuchung des Systems be-
schrieben. Als letztes findet sich eine kurze Zusammenfassung der Arbeit.
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2 Das Übertragungsverfahren von DAB

Innerhalb des Projekts Eureka 147 wurde ein System spezifiziert, welches die di-
gitale Übertragung von Hörfunk gestattet. Damit kämen die Vorteile der digitalen
Übertragung auch beim Rundfunk zum Zug. Wesentliche Merkmale der Entwicklung
sind:

• die Übertragung in CD-naher Qualität. Im spezifizierten Verfahren wird dabei
auf die sogenannte MPEG2-Kodierung der “Motion Picture Experts Group”
zurückgegriffen, die eine variable Qualität bis nahezu CD-Qualität bei unter-
schiedlicher Bandbreite ermöglicht,

• die Übertragung anderer multimedialer Daten, wie zum Beispiel den Hörfunk
begleitende Untertitel oder Bilder, Stauwarnungen und Nachrichten,

• der mobile Empfang wird in der Spezifikation des Hörfunk erstmals definiert
und bis 200 km/h ausgelegt,

Auf der Seite der Senderbetreiber lassen sich noch weitere Vorteile ansprechen,
wie:

• die Frequenzökonomie. Das verwendete Modulationsverfahren besitzt ein re-
lativ scharf begrenztes Spektrum, dessen Bandbreite durch die Digitaltechnik
sehr effizient genutzt wird. Gleichzeitig wird der Betrieb eines Gleichwellen-
netzes unterstützt, so daß Pufferbereiche zwischen zwei benachbarten Sendern
entfallen können.

• ein sparsamer Energieverbrauch. Die Techniken der digitalen Fehlerkorrektur-
verfahren erlauben eine geringere Signal zu Rauschleistung.

Dieses System, “Digital Audio Broadcasting” oder auch kurz DAB genannt, be-
nutzt ein breitbandiges Spektrum zur Übertragung. Dabei werden neben der Modu-
lationsfrequenz eine Vielzahl an Unterträgern moduliert. Das Signal wird digital im
Frequenzbereich zusammengesetzt und dann mittels einer Fouriertransformation in
den Zeitbereich transformiert.

Die Kapazität von DAB reicht für mehr als ein Audioprogramm. Deshalb werden
in einem Multiplex mehrere Hörfunkprogramme parallel übertragen. Die Qualität
jedes einzelnen Programms ist dabei individuell bestimmbar. Sie ist, wie auch die
Zusammensetzung des gesamten Programmixes, dynamisch veränderbar.

2.1 Einbettung des COFDM-Encoders in DAB

Die Audio- und Bilddaten werden vom Tonstudio eines Senders zu einem Service
zusammengesetzt. Da mehrere davon parallel über ein DAB-Spektrum ausgestrahlt
werden, werden diese Daten zunächst bei einem Ensembleprovider gesammelt. Von
dort aus werden sie an die einzelnen Sendestationen übermittelt. Die Daten werden
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Abbildung 1: Allgemeine Struktur für ein Gleichfrequenznetzwerk

erst hier kanalkodiert, da dies die Datenrate erheblich vergrößert, was sonst auch
Service- und Ensembletransportnetzwerk belasten würde. Die in dieser Arbeit vor-
gestellte Lösung für den COFDM-Enkoder beinhaltet auch die Anpassung an ein
spezifiziertes Ensembletransportnetzwerk. Dazu gehören CRC’s und RS-Code.

2.2 Aufbau des COFDM-Encoders

Das COFDM-Signal ist von einer Rahmenstruktur geprägt. Dabei werden zunächst
ein Nullsymbol zur Grobsynchronisation und anschließend ein Phasenreferenzsym-
bol zur Feinsynchronisation versendet. Danach folgt eine definierte Zahl an Daten-
symbolen. Der realisierte COFDM-Encoder erzeugt dabei das zeitdiskrete komplexe
Basisbandsignal. Der genaue Aufbau des Signals ist in [1] spezifiziert.

Ensemble-
multiplexer

komponenten
Audio/Daten

Service-

adaption

Netzwerk- Transport
netzwerk

Netzwerk-
adaption

Netzwerk-
adaption

Kanal-
kodierung
COFDM

Kanal-
kodierung
COFDM

Abbildung 2: Blockschaltbild des COFDM-Encoders
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2.2.1 PRBS

Die Daten der einzelnen Kanäle werden vor der Kanalkodierung zu einer pseudozu-
fälligen Bitfolge addiert. Dadurch sollen Periodizitäten der Eingangsfolge reduziert
werden. Das resultierende Signal besitzt eine gleichmäßigere Energieverteilung über
das Spektrum.

2.2.2 Kanalkodierung

Die Kanalkodierung fügt den Daten den für den Transport über einen fehlerbehaf-
teten Kanal notwendigen Fehlerschutz an. Da es sich bei der terrestrischen Über-
tragung um eine unidirektionale Verbindung handelt, wird dem Signal eine hohe
Redundanz hinzugefügt. Die Redundanz wird von einem Faltungskodierer erzeugt.
Um die Koderate variieren zu können, werden im Anschluß bestimmte Bits aus dem
Datenstrom wieder gelöscht. Diesen Vorgang nennt man Punktieren. Die Koderate
reicht bei dem verwendeten Verfahren von 8

9
bis 1

4
.

2.2.3 Zeitinterleaver

Um den Einfluß von Bündelfehlern auf den Kanal zu mindern, findet eine Kode-
spreizung der Daten statt. Die Daten werden dabei gleichmäßig auf 16 DAB-Rahmen
aufgeteilt. Die Daten müssen dabei über diesen Zeitraum zwischengespeichert wer-
den.

2.2.4 Frequenzinterleaver

Da das Signal bei der Übertragung frequenzselektiven Störungen unterworfen ist,
werden zusammenhängende Daten innerhalb eines Symbols über das gesammte
Spektrum gestreut. Auch hierdurch soll das Entstehen von Bündelfehlern verhin-
dert werden.

2.2.5 QPSK-Mapper

Die einzelnen Träger des Signals werden im Frequenzbereich moduliert. Dabei wird
jedem Träger eine von 4 Phasen zugeordnet.

2.2.6 Differentielle Modulation

Es wird nicht die Phase der Träger direkt, sondern die Differenz zum jeweils voran-
gegangenen Symbol übertragen. Der differentiell modulierte Träger besitzt nun eine
von 8 Phasen. Die maximale Phasendifferenz des Trägers in zwei aufeinanderfolgen-
den Symbolen ist damit nicht π sondern 3

4
π.

2.2.7 OFDM-Generator

Um das Symbol vom Frequenzbereich in den Zeitbereich zu transformieren, wird
eine inverse Fouriertransformation angewendet. Anschließend wird das Symbol noch
um ein Schutzintervall verlängert.
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3 Theoretische Grundlagen

3.1 DFT

Hier soll eine kurze Einführung in die Berechnung der Fouriertransformation mittels
eines Computers gegeben werden. Es soll dabei zunächst auf die Punkte eingegan-
gen werden, die für eine korrekte Interpretation notwendig sind. In den folgenden
Abschnitten werden Möglichkeiten zur Beschleunigung des Algorithmusses ange-
sprochen. Als letztes kommen Überlegungen zur Genauigkeit der Berechnung bei
endlicher Registerbreite hinzu.

Die Berechnung einer diskreten Fouriertransformation setzt zunächst ein paar Ver-
einbarungen für die Interpretation der Ergebnisse voraus. Die Fouriertransformation
ist zunächst definiert als

F (x) =

∫ +∞

−∞
(f(x) · e(−jωx))dx. (1)

Dieses Integral läßt sich auf Grund der Grenzen von −∞ bis +∞ nicht numerisch
lösen. Zunächst muß eine diskrete Entsprechung für die obige Gleichung gefunden
werden. Es läßt sich zeigen, daß einem periodischen Zeitsignal eine Folge von Del-
taimpulsen im Frequenzbereich entspricht. Ebenso läßt sich zeigen, daß einem im
Frequenzbereich periodischen Signal eine Folge von Deltaimpulsen im Zeitbereich
entspricht. Nimmt man beide Beobachtungen zusammen, läßt sich zu einem periodi-
schen diskreten Signal im Zeitbereich ein periodisches diskretes Spektrum zuordnen.
Die Berechnung der diskreten Fouriertransformation ist mit

X(n) =
1

T1
·

N
∑

k=1

x(k) · e(−jω n·k

N
), (2)

und ihre Inverse mit

x(n) =
1

T2
·

N
∑

k=1

X(k) · e(jω n·k

N
) (3)

gegeben. Bei der Größe der Vorfaktoren 1/T1 und 1/T2 herrscht Uneindeutigkeit.
Soll die Amplitude der analogen Fouriertransformation angenähert werden, wird
üblicherweise T1 zu 1 und T2 zu N gesetzt. Um jedoch das Parsevalsche Theo-
rem über die Energieerhaltung in Frequenz und Zeitdarstellung einzuhalten, muß
T1 = T2 = 1√

N
gelten. Bei der im COFDM-Modulator verwendeten IFFT geht

es insgesamt nur um die relativen Beträge der Samples zueinander, da das Signal
später noch verstärkt wird. Wichtig ist nur die Angabe der Maximalamplituden des
Ausgangssignals, um die nachfolgenden Stufen korrekt auszusteuern.

In der Praxis geht es meistens darum, mit der diskreten Fouriertransformation ein
reales Signal anzunähern. Um vom realen Signal mittels der DFT zum realen Spek-
trum zu kommen, muß das Eingangssignal diskretisiert, also abgetastet werden.
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Eine eindeutige Abbildung ist hierbei nach Shannons Abtasttheorem nur bei band-
begrenzten Signalen möglich. Um die DFT anwenden zu dürfen, muß das erhaltene
Signal periodisch angenommen werden. Um mit dem Ergebnis der DFT Aussagen
über das reale System machen zu können, behilft man sich mit einem weiteren Trick.
Da das reale Signal nicht periodisch ist, nimmt man an, es wäre ein Ausschnitt ei-
ner Periode davon. Das entspricht einer Multiplikation der periodischen Funktion
mit einem Rechtecksignal. Es läßt sich zeigen, daß eine Multiplikation im Zeitbe-
reich einer Faltung im Frequenzbereich entspricht. Die Fouriertransformierte eines
Rechtecks ist die SI-Funktion sin(x)/x. Ersetzt man also im Frequenzbereich jeden
Delta-Impuls durch eine SI-Funktion, erhält man ein Bild des realen Spektrums.

3.2 FFT-Algorithmus

Die grundlegende Idee dabei ist, die Summe in zunächst zwei Teile zu zerlegen. Das
setzt voraus, daß N selber teilbar ist. Allgemein läßt sich eine Fouriertransformation
um so schneller berechnen, je hochgradiger die Zahl N teilbar ist. Gehen wir zunächst
von einer Teilbarkeit durch zwei aus. Die Summe zerfällt dabei in zwei Teile, einen
von 1 bis 2, und einen von 1 bis N/2:

N = 2 · R; R = N/2; n = (2 · n1 + n0); k = (R · k1 + k0);

X(2 · n1 + n0) =

1
∑

k1=0

N/2
∑

k0=0

x(2 · k1 + k0) · e
(−jω

(2·n1+n0)(2·k1+k0)
N

).

Substituiert man nun
W = e(−jω 1

N
)

und trennt den Term e() erhält man

X(2 · n1 + n0) =
1

∑

k1=0

N/2
∑

k0=0

x(2 · k1 + k0) · W
n1k0R

· W n0k1·2 · W n0k0.

Der fehlende Term W 2Rn1k1 nimmt wegen N = 2R immer den Wert 1 an und ist
deshalb gleich weggelassen worden. Der Faktor W n1k0R nimmt immer nur die Werte
1 oder −1 an.

Diese Summe läßt sich nun in zwei Schritte aufteilen, die nacheinander berech-
net werden können. Der Faktor W n0k0 kann dabei wahlweise dem ersten oder dem
zweiten Schritt zugeordnet werden oder als unabhängiger Zwischenschritt ausgeführt
werden. Im letzten Fall spricht man vom sogenannten Twiddle-Schritt und von W n0k0

als sogenanntem Twiddle-Faktor. Es fällt dabei auf, daß die Reihenfolge der Ergeb-
nisse nicht mehr stimmt. Um eine lineare Beziehung wieder herzustellen, müssen die
Ergebnisse umgeordnet werden. Ist dieses ein separater Berechnungsschritt, spricht
man vom FFT-Reversal. Da die Ergebnisse im Frequenzbereich umgeordnet werden
müssen, spricht man auch von “decimation in frequency”-Algorithmen.
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Erster Berechnungsschritt:

x1(2 · n0 + k0) =

N/2
∑

k0=0

x(2 · k1 + k0) · W
N/2·n0k1 · W n0k0

Zweiter Berechnungsschritt:

x2(2 · n0 + k0) =

1
∑

k1=0

x1(2 · n0 + k0) · W
n1k0·2

Reversal:

X(2 · n1 + n0) = x2(2 · n0 + n1)

Nach dem gleichen Prinzip läßt sich die innere Summe erneut unterteilen, wenn
auch N/2 sich in weitere Faktoren zerlegen läßt. Kann man N als Potenz von
2 mit N = 2q darstellen, erhalten wir durch fortgesetztes Teilen durch zwei den
sogenannten Radix-2 oder Basis-2 Algorithmus, der nach seinen Entdeckern auch
Cooley-Tukey-Algorithmus genannt wird. Bei der weiteren Zerlegung wird aus dem
Faktor W n1k0·2 in den anschließend aufeinanderfolgenden Schritten jeweils ein Fak-
tor, der ebenfalls immer nur die Werte 1 und −1 annimmt. Multiplikationen finden
bei diesem Algorithmus nur mit den Twiddle-Faktoren statt. Alle Stufen können
sequentiell nacheinander berechnet werden. Die Berechnung kann dabei ”in-place”
geschehen, was bedeutet, daß die jeweils nächste Stufe die Ergebnisse der vorherigen
überschreibt. Dadurch wird kein zusätzlicher Speicher für die Berechnung benötigt.
Es läßt sich auch zeigen, daß die Reihenfolge der Stufen unter Berücksichtigung an-
derer Twiddle-Faktoren umgekehrt werden kann. Dies führt zu einem “decimation
in frequency”-Algorithmus. Zu beachten ist, daß der Algorithmus nur für Eingangs-
daten mit N als Zweierpotenz angewendet werden kann.

Der Radix-2 Algorithmus besitzt log2(n) Stufen und läuft also in einer Zeit pro-
portional zu N ·log2(N) ab. Der Algorithmus ist hinsichtlich der Additionen optimal.
Ein besseres Verfahren zum Aufaddieren von N · N unabhängigen Werten als ein
logarithmisches gibt es nicht. Bei der Zahl der Multiplikationen läßt sich jedoch
noch einiges verbessern. Für eine 2048 Punkte FFT finden nämlich viele der Multi-
plikationen mit den Faktoren W N ,W N/2 und W N/4 mit den entsprechenden Werten
1,−1,j statt. Ebenso lassen sich komplexe Multiplikationen mit W N/8 mit nur zwei
statt üblicherweise vier reellen Multiplikationen berechnen, da Real- und Imaginär-
teil von W N/8 = 1/

√

(2) + j/
√

(2) gleich groß sind.

Nimmt man statt einer Zerlegung der Summe durch zwei eine Zerlegung durch 4
vor, erhält man den Radix-4 Algorithmus. Anstelle der Werte 1 und −1 nehmen
hier die Faktoren der Summenstufen die Werte 1,−1,j und −j an. Auch hier finden
Multiplikationen nur mit den Twiddle-Faktoren statt. Da hier jedoch nur log4(N)
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Abbildung 3: Signalflußgraph einer 16 Punkte Radix-2 FFT mit “decimation in frequen-
cy”.

Stufen benötigt werden, reduziert sich die Zahl der nötigen Multiplikationen theore-
tisch auf die Hälfte. Da jedoch viele Multiplikationen mit 1 ersetzt werden, entfallen
in der Praxis nur etwa 20% der Multiplikationen. Bei einer Implementation eines
Radix-4-Algorithmus ist dabei darauf zu achten, daß die innere Summe von 4 · 4
Werten auch logarithmisch optimiert ausgeführt wird. Ansonsten verschenkt man
schnell die Rechengeschwindigkeit, die man durch die Multiplikationen gewonnen
hat, wieder mit zusätzlichen Additionen.

Der Radix-4 Algorithmus läßt sich nur bei Eingangsdaten mit der Zahl N als Vie-
rerpotenz anwenden. Aufgrund der stufenweisen Berechnung, die voneinander un-
abhängig durchgeführt werden kann, lassen sich jedoch Mischalgorithmen finden.
Bei diesen wird den Basis-4 Stufen eine Basis-2 Stufe vorangestellt. Dadurch läßt
bei einer beschleunigten Berechnung derselbe Eingangsraum wie bei dem Radix-2
Algorithmus erschließen.

Prinzipiell läßt sich die Zahl der Multiplikationen durch weiteres Erhöhen der Basis
noch weiter reduzieren. Der Gewinn ist jedoch nur marginal und beträgt für einen
Radix-16 Algorithmus ungefähr 5% gegenüber Radix-4. Zu einem Ende kommt diese
Möglichkeit der Optimierung, wenn die linke und rechte Stufe der FFT gleich groß
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sind. Die Multiplikationen, die in der Mitte der beiden Stufen liegen, lassen sich
so optimal minimieren. Der Algorithmus würde einem Radix-sqrt(N) Algorithmus
entsprechen.

3.3 Berechnung der IFFT mittels FFT

Um nicht die gesamte Optimierungsarbeit doppelt machen zu müssen, wäre es wün-
schenswert, einen einzigen Algorithmus zu besitzen, der sowohl FFT wie auch die
Inverse berechnen kann. Bei genauerer Betrachtung des FFT-Algorithmus fällt leicht
auf, unter welchen Bedingungen eine FFT zur Berechnung einer IFFT verwendet
werden kann. Betrachtet man die Gleichungen für FFT und IFFT, ist der einzige
Unterschied im Produkt von x und dem Drehfaktor W zu sehen. Formulieren wir
das Produkt ausführlich:

FFT:
x(k) · e−φ

→

x(k) · (cos(−φ) + jsin(−φ)) →

(a + jb) · (cos(φ) − jsin(φ))

IFFT:
x(k) · eφ

→

(a + jb) · (cos(φ) + jsin(φ))

Zunächst fällt auf, daß sich die IFFT mittels einer FFT berechnen läßt, wenn man
entweder die Eingangswerte x, oder die Drehfaktoren W komplex konjugiert und
das Ergebnis ebenfalls komplex konjugiert. Formuliert man weiter

FFT:
Re = acos(φ) + bsin(φ)

Im = bcos(φ) − asin(φ)

IFFT:
Re = acos(φ) − bsin(φ)

Im = asin(φ) + bcos(φ)

sieht man, daß auch durch einen Tausch von Real- und Imaginärteil der Eingangs-
werte vor und nach der FFT eine inverse Transformation berechnet wird. Dies läßt
sich durch Implementation mit Hilfe eines Zeigers auf Real- und Imaginärteil in
zwei Befehlen realisieren. Die IFFT ist im Rahmen des COFDM-Modulators auf
diese Weise realisiert worden.
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3.4 Definition eines Echtzeitsystems

Eine gute Definition eines Echtzeitsystems findet sich in [8]. Die wesentlichen Ge-
danken sollen hier zusammengefaßt werden, Ein Echtzeitsystem ist ein System, in
dem die korrekte Funktion nicht nur von den Ausgaben, sondern auch von der Zeit,
zu der diese Ausgaben erzeugt werden, abhängt. Die Zeit zwischen einer Eingabe
und den daraus resultierenden Ausgaben heißt Antwortzeit.

Damit die Umwelt auf ein System reagieren kann, muß es eine Ausgabe erzeugen. Ein
Echtzeitsystem erzeugt immer – auch im Fehlerfall – eine definierte Antwort (Re-
aktivität). Das impliziert, daß das System vorhersagbar ist und formal beschrieben
werden kann. Im einfachsten Fall wird einfach eine Zustands- oder Fehlermeldung
an den Benutzer ausgegeben, der dann das System daraufhin genauer untersucht.

Ebenfalls garantiert ein Echtzeitsystem eine Antwort innerhalb einer maximalen
Zeit auf eine Eingabe hin. Die maximal zulässige Antwortzeit bestimmt die physi-
kalische Umgebung, in der das System betrieben wird. Man unterscheidet hier noch
zwischen harten und weichen Echtzeitsystemen. Bei harten Systemen ist die Einhal-
tung der maximal zulässigen Antwortzeit zwingend vorgeschrieben. Eine Antwort
nach dieser Grenze ist unbrauchbar und wertlos. Bei einem harten System, welches
diese Grenzen überschreitet, kann dies Gefahr für Menschen oder Material bedeu-
ten. Ein weiches System ist ein System, bei dem die Antwortzeiten nur im zeitlichen
Durchschnitt eingehalten werden müssen. Einzelne Überschreitungen können in der
Auswirkung abgefedert werden oder sind durch einen Pufferspeicher kurzfristig vom
realen System getrennt.

Für ein Echtzeitsystem mit harter Grenze sind zum Beispiel Fahrzeug- oder Flug-
zeugsteuerungen vorstellbar. Als Beispiel für ein System mit weicher Grenze mag
man sich einen Prozeß an einem Fließband vorstellen. Das Fließband kann vor und
hinter dem Prozeß ein Zwischenlager für ankommende Teile besitzen. Der eigentli-
che Prozeß hat also einen Spielraum, innerhalb dessen seine Durchlaufzeit pro Teil
schwanken darf. Wie man daran sieht, treten in der Realität meistens harte und
weiche Grenzen zusammen auf. In jedem Fall sollte für das System ein Zustand, wie
zum Beispiel das Auslösen eines Alarms, vorgesehen werden, mit dem es auf das
Überschreiten der zulässigen Antwortzeiten reagiert.

Ebenfalls wird an den Beispielen deutlich, daß die Verarbeitungszeit, die dem Pro-
zeß zur Verfügung steht, eine relative Größe ist. Sie ist einerseits durch die gesetzte
Aufgabe begrenzt. Auf der anderen Seite läßt sie sich jedoch durch die eingesetzte
Hardware stark beeinflussen. Generell ist dabei immer eine effiziente Lösung gesucht.
Diese soll sowohl den größtmöglichen Raum bei der Wahl der zu verwendenden Hard-
ware bieten, als auch die Robustheit bieten, die durch Verwendung eines einfachen,
minimalen Systems entsteht.



3 THEORETISCHE GRUNDLAGEN 18

3.5 Das Fraktional-Integer Format

3.5.1 Darstellung und Auflösung von Zahlenformaten

Komplexe mathematische Formeln lassen sich numerisch auf Computern nur inner-
halb eines vorgegebenen Wertebereichs lösen. Das liegt daran, daß nur eine begrenzte
Zahl von Stellen im Computer gespeichert werden kann. Aus diesem Grunde lassen
sich komplexe mathematische Formeln auch nur mit begrenzter Genauigkeit lösen.
In diesem Fall kann nur eine begrenzte Zahl an Nachkommastellen gespeichert wer-
den. Bei der Genauigkeit spricht man auch von Auflösung. Damit wird die Anzahl
der numerischen Stellen einer Zahl, die noch korrekt dargestellt sind, bezeichnet. Die
Stellen sind in der Digitaltechnik binär. Die Auflösung wird bei Computern deshalb
in Bit angegeben. Die in der Nachrichtentechnik verbreitete Angabe von Dezibel
läßt sich leicht daraus ableiten. Ein Bit entspricht dem Faktor zwei, daraus folgt
1Bit=̂20Log(2) = 6.02db.

In der fortschreitenden Entwicklung von Rechenmaschinen haben sich zwei Darstel-
lungsformen von Zahlen durchgesetzt. Zum einen der Integerdatentyp, der sich durch
die einfache Repräsentation in der Hardware auszeichnet, sowie der Fließkommada-
tentyp, der sich durch größere Fehlertoleranz und Flexibilität in der Anwendung
hervorhebt. Beide Datentypen werden von vielen Hochsprachen in verschiedenen
Auflösungen unterstützt, die jedoch synonym verwendet werden können. Dadurch
sind Optimierungen von Algorithmen hinsichtlich des Speicherbedarfs möglich.

Die Anzahl der Bits, die für die Darstellung von Zahlen verwendet wird, ist prinzipi-
ell frei wählbar. In der Praxis stellt die verwendete Hochsprache dabei Datentypen
zur Verfügung, die den Ansprüchen der meisten Algorithmen genügen. Unterschiede
gibt es jedoch in der Abarbeitungsgeschwindigkeit von Berechnungen. Grundsätzlich
gilt, je mehr Bits für die Darstellung von Zahlen verwendet werden, desto aufwen-
diger, und damit zeitraubender, ist auch eine Berechnung.

3.5.2 Integerarithmetik

Besonders schnell lassen sich Berechnungen mit ganzzahligen Werten ausführen. In
der Hardware ist dabei für jedes Bit an Genauigkeit ein Addiergatter vorhanden.
Dadurch kann die Berechnung komplett parallel durchgeführt werden. Da diese Dar-
stellungsform nur einfache Hardwarestrukturen voraussetzt und auch sehr schnelle
Berechnungen stattfinden, werden viele Prozessoren ausschließlich mit dieser Tech-
nik ausgerüstet. Fließkommaberechnungen können auch auf dieser Hardware algo-
rithmisch implementiert werden, benötigen jedoch einen wesentlich höheren Zeit-
aufwand für eine mathematische Operation. Um den Geschwindigkeitsvorteil der
Festkomma-Arithmetik zu nutzen und dennoch Zahlen mit Nachkommastellen dar-
stellen zu können, existiert das sogenannte Fraktional-Integer-Format. Dabei wird
ein Teil des Zahlenstrahls mittels Multiplikation mit einer Konstante auf den Dar-
stellungsbereich einer Festkommazahl abgebildet.
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3.5.3 Rechenvorschriften bei Festkomma-Arithmetik

Additionen und Subtraktionen von zwei Fraktional-Integer-Zahlen sind dadurch mit
einfacher Integeraddition bzw. -subtraktion darstellbar. Einziges Problem dabei ist
ein eventueller Über- oder Unterlauf des darstellbaren Zahlenbereichs. Dieses Pro-
blem tritt generell bei jeder Berechnung mit einem Computer auf, jedoch ist der
Bereich, innerhalb dessen mathematische Operationen durchgeführt werden dürfen,
durch die Transformation stark eingeschränkt. Dies ist auch Kern bei der effizienten
Implementierung eines Algorithmus mittels FI-Zahlendarstellung. Der Programmie-
rer muß dabei den Wertebereich, innerhalb dessen sich die darzustellenden Variablen
bewegen, genau kennen, und seine Veränderung über den Ablauf des Algorithmus
verfolgen. Nur so ist eine Implementation, die sowohl schnell als auch genau ist,
möglich.

Problematisch ist vor allen Dingen die Darstellung der Multiplikation zweier FI-
Zahlen mittels einer normalen Integermultiplikation. Sinn der Transformation war
es ja gerade, den darstellbaren Wertebereich voll auszuschöpfen. Eine Multiplikation
bedeutet jedoch, daß der Wertebereich nach der Multiplikation doppelt so groß ist
wie vorher. Eine Lösung dieses Problems ist eine Normierung der größten Eingangs-
daten auf Eins. Bei den sogenannten Fraktional-Integer-Formaten (Qxx Formaten)
wird einfach die größte darstellbare Zahl zu Eins gesetzt. Das bedeutet für Multi-
plikationen, daß das Ergebnis nie den Wertebereich des modifizierten FI-Datentyps
überschreitet. Das Integerergebnis hat zwar nach wie vor einen doppelt so großen
Wertebereich, kann aber durch das Verwerfen aller irrelevanten Nachkommastellen
wieder auf den ursprünglichen Wertebereich angepaßt werden. Dies geschieht mit-
tels Division oder einer Shift-Operation. Problematisch ist in diesem Verfahren je-
doch ein möglicher Überlauf bei Additionsoperationen. Eine grundsätzliche Lösung
für die Anpassung eines FI-Algorithmus an Integeroperationen bietet eine dyna-
mische Anpassung des FI-Wertebereiches an den des Integerformates. Dies ist für
viele Algorithmen, die stufenweise ablaufen, wie zum Beispiel auch den der schnel-
len Fouriertransformation, kein Problem. Bei der auf Eins normierten Darstellung
muß zum Beispiel nach jeder Addition und Subtraktion das Ergebnis durch zwei
geteilt werden, um einen möglichen Überlauf zu verhindern. Dieses Verfahren wird
auch Blockgleitkommaarithmetik genannt (siehe auch [7]). Bei der Interpretation
der Ergebnisse muß der sich ergebende Vorfaktor, der durch den Algorithmus vor-
geschrieben wird, berücksichtigt werden.

3.5.4 Beschreibung des Q15-Formates

Für schnelle Berechnungen mit eingeschränkter Genauigkeit und sparsamem Spei-
cherverbrauch bietet sich der Q15-Datentyp an. Er basiert auf dem häufig unter-
stützten 32-Bit Integer Datenformat. Ein Bit zählt als Vorzeichenindikator. Die ver-
bleibenden 31 Bit müssen, um eine Multiplikation in einem Schritt durchzuführen,
doppelt so groß sein, wie der Integerbereich einer Zahl. Es werden darum 15 Bit für
die Repräsentation der Zahlen gewählt. Diese können inclusive ihrem Vorzeichenbit
platzsparend in einem 16-Bit Integer Datenformat gespeichert werden. Das Ergebnis
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einer Multiplikation belegt 30 Bits. So können zwei Zahlen nach ihrer Multiplikation
noch addiert werden, bevor ein anschließender Shift den Zahlenraum wieder auf 15
Bit beschränkt. Der bei der Addition entstehende Fehler ist somit vernachlässigbar
gering. Genau diese Rechenweise läßt sich für den FFT-Algorithmus des COFDM-
Modulators ausnutzen. So läßt sich der entstehende Fehler gering halten.

Der als Beispielhardware gewählte Prozessor unterstützt zudem einen präziseren
40-Bit Integer Datentyp. Mit diesem als Basis für eine Multiplikation könnten 4
Bits an Genauigkeit hinzugewonnen werden. Allerdings existiert kein 19-Bit Daten-
typ der gespeichert werden könnte. So müssen Abstriche beim Speicherverbrauch
und auch bei der Geschwindigkeit gemacht werden. Die in 5.8 gemachten Aussagen
über den zu erwartenden Fehler in der Berechnung zeigen, daß das Q15 Datenformat
den Anforderungen genügt. Sollen doch noch Rechnungen mit mehr Bits an Auf-
lösung durchgeführt werden, reichen die von der hardwareseitig angebotenen und
unterstützten Datenformate nicht mehr aus. Die Multiplikation zweier 19 Bit Zah-
len miteinander ergibt die größten von der Hardwareseite darstellbaren Zahlen. Um
noch größere Auflösungen darstellen zu können, müßten jetzt die Zahlen durch mehr
als eine 30 Bit Integer Variable zusammengesetzt werden. Für das Q30 Datenfor-
mat reicht es jedoch völlig aus, einen Algorithmus zur Verfügung zu stellen, der das
Ergebnis einer Multiplikation korrekt im Q30-Format zurückgibt. Dabei werden die
beiden Faktoren in je zwei gleichgroße Q15 Zahlen zerlegt, die als hochwertiger und
als niederwertiger Summand behandelt werden. Das Ergebnis der Multiplikation
ergibt sich gemäß dem Kommutativgesetz zu

(Ahi ∗ 215 + Alo) ∗ (Bhi ∗ 215 + Blo) =

Ahi ∗ Bhi ∗ 230 + Alo ∗ Bhi ∗ 215 + Blo ∗ Ahi ∗ 215 + Alo ∗ Blo

Um das Ergebnis korrekt im Q30-Format darzustellen, werden nur die oberen 30
Stellen des Ergebnisses benötigt. Die Berechnung des letzten Produktes kann unbe-
rücksichtigt bleiben, da dabei ein vernachlässigbar kleiner Fehler entsteht. Insgesamt
werden jedoch drei Multiplikationen und drei Additionen benötigt, um das Ergebnis
zu erhalten. Der Rechenaufwand für einen Algorithmus steigt bei Verwendung des
Q30 Formates entsprechend.

3.6 Galois-Felder

“Ein Galois-Feld ist ein Körper mit einer endlichen Anzahl von Elementen. Ein
Galois-Feld mit q Elementen wird als GF(q) bezeichnet.” ([20],Seite 100)

Ein Körper ist ein Zahlenraum, über dem zwei Funktionen definiert sind. Beide
Funktionen müssen ein Element für Identität besitzen, die üblicherweise mit Null
und Eins bezeichnet werden. Zu der ersten Funktion muß die Inverse existieren und
eindeutig sein. Für die zweite Funktion gilt dasselbe mit Ausnahme des Nullelements.

Beispiel: Die ganzen Zahlen, die Addition und die Multiplikation bilden einen Kör-
per. Die inversen Funktionen sind Subtraktion und Division. Das Identitätselement
bezüglich der Addition ist die Null, das der Multiplikation die Eins.
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Rechentabellen für die Modulo-2-Arithmetik in GF(2)
+/- 0 1 * 0 1

0 0 1 0 0 0
1 1 0 1 0 1

Es sind zwei Arten von Galois-Feldern bekannt, die Restklassen modulo einer
Zahl und die Restklassen modulo eines Polynoms. Wird der zulässige Zahlraum bei
einer Addition oder einer Multiplikation überschritten, wird der Rest nach einer Di-
vision als Ergebnis der Operation definiert. Bekanntestes Beispiel ist die Bool’sche
Algebra, die auch als Restklassenarithmetik modulo Zwei in GF(2) aufgefaßt werden
kann. Die ODER-Verknüpfung entspricht dabei der Addition, die UND-Verknüpfung
der Multiplikation. Addition und Subtraktion sind identisch, ebenso Multiplikation
und die Division, die jedoch nur für 1 · 1 definiert ist.

Bei der Restklassenrechnung modulo einem Polynom wird für jeden Koeffizienten
des Polynoms ein Bit als Zahl in GF (2) benutzt.

Rechentabellen für die Modulo-2-Arithmetik in GF (22)
mit Generatorpolynom d2 + d + 1

+/- 0 1 d d+1 * 0 1 d d+1

0 0 1 d d+1 0 0 0 0 0
1 1 0 d+1 d 1 0 1 d d+1
d d d+1 0 1 d 0 d d+1 1

d+1 d+1 d 1 0 d+1 0 d+1 1 d

In jedem Galois-Feld existiert mindestens ein primitives Element. Dieses zeichnet
sich dadurch aus, daß alle Elemente des GF mit Ausnahmen der Null als Potenz des
primitiven Elements dargestellt werden können. In obiger Tabelle sind d und d + 1
primitive Elemente. Für d sind die Potenzen d0 = 1,d1 = d,d2 = d · d = d + 1,
d3 = d · (d+1) = 1. Es läßt sich mit dieser Beziehung durch Angabe eines primitiven
Elements α auch ein diskreter Logarithmus definieren: αi = x → logα(x) = i . Das
Ergebnis einer Multiplikation in GF(q) kann so auch über den diskreten Logarithmus
und eine Addition berechnet werden. Es gilt:

x · y = αlogα(x)+logα(y).

Sind die Logarithmen der Zahlen und die Exponenten von α in Tabellen abgelegt,
läßt sich die Multiplikation effizient durch eine Addition und 3 Tabellennachschläge
implementieren. Dadurch entfällt die Polynommultiplikation und die anschließende
Division durch das Generatorpolynom. Die Größe der Tabellen liegt für GF(q) bei
jeweils q Einträgen. Natürlich kann das Ergebnis einer Multiplikation auch direkt in
der Tabelle nachgeschlagen werden. In diesem Fall benötigt man jedoch q2 Einträge.
Auch hier läßt sich wieder die Gesetzmäßigkeit aus Kapitel 3.7 anwenden.
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3.7 Performance-Memory Modell

Die Optimierung einer Software hinsichtlich Speicherverbrauch und Geschwindigkeit
muß normalerweise mit einem Kompromiß enden. Bei einem gewissen Grad der Op-
timierung läßt sich die Abarbeitung von Algorithmen nur noch beschleunigen, wenn
man den Datenstrukturen mehr Platz einräumt. Zum Beispiel könnten zu speichern-
de Daten komprimiert abgelegt werden. Dazu wird aber Rechenzeit für das Packen
und entpacken benötigt.

Abbildung 4: Modell eines Automaten

Verallgemeinert läßt sich ein Prozeß als Automat mit Ein- und Ausgabedaten und
einem Zwischenspeicher darstellen. Der Speicher enthält die Zustandsinformatio-
nen. Aus diesem Status und den Eingabedaten berechnet der Prozeß über logische
Funktionen eine Ausgabe sowie den neuen Status des Prozesses. Sind die Anzahl
der Ein- und Ausgaben finit und in der Menge konstant, läßt sich die Reaktion des
Automaten vorherberechnen. Die Antworten können dann einfach in einer Tabelle
nachgeschlagen werden. Die Berechnung der Ausgangswerte findet so in immerhin
einem Schritt statt. Der Gewinn hängt davon ab, wie aufwendig die Funktion nor-
malerweise zum Berechnen des Ausgangssignals ist.

Die Anzahl der Einträge in der Tabelle ist durch die Größe des Eingabevektors und
durch die Größe des Zustandsvektors bestimmt. Ein Eintrag der Tabelle muß den
Ausgabevektor und den neuen Zustandsvektor beinhalten. Nehmen wir als Beispiel
einen Prozeß mit 4 Bit Eingangsvektor, 8 Bit Zustand und 16 Bit Ausgangsvektor,
so ergibt sich die Zahl der Einträge in die Tabelle zu 24+8. Jeder Eintrag besitzt
die Größe 8 + 16 Bit. Die Tabelle würde als eine Größe von 24+8

· (8 + 16) = 98304
Bit besitzen. Vor allem Eingangs- und Zustandsvektor begrenzen durch ihren expo-
nentiellen Einfluß auf die Tabellengröße eine sinnvolle Anwendung. Versucht man
beispielsweise die 2048 Punkte FFT mittels einer Tabelle zu implementieren, stößt
man schnell an die Grenzen des Machbaren. Die 2048 Träger werden mit je 2 Bit
moduliert. Einen Zustand benötigt die FFT nicht. Dennoch zählt die Tabelle für
dieses Beispiel 24096 Einträge. Ein heutiger Rechner kann maximal 232 Worte ad-
dressieren.
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Ist die Tabelle zu groß, ist der Programmierer gefragt. Er kann prüfen, ob sich die
Größe des Eingangsvektors noch reduzieren, oder sich wenigstens eine Teilfunktion
in der Tabelle speichern läßt. Oft läßt sich die Funktion in zwei Teile trennen, die
dann jeweils für sich in einer Tabelle nachgeschlagen werden. Für das obige Beispiel
würde das zum Beispiel bedeuten, daß man zwei Automaten hintereinander schaltet,
die jeweils einen Zustandvektor der Größe 4 Bit besitzen. Die Tabellen würden dann
eine Größe von je 24+4

· (4 + 16) = 5120 Bit besitzen, zusammen also ein Zehntel
der ursprünglichen Tabelle. Während es für rein logische Funktionen Optimierungs-
verfahren zur Minimierung der Funktionszahl gibt, sind mir jedoch Verfahren für
andere Funktionen wie <,>,if() und Tabellen nicht bekannt. Hier ist immer noch
Kreativität und Programmierwissen gefragt.

Speicherverbrauch
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Abbildung 5: Qualitativer Verlauf der Geschwindigkeit über dem zur Verfügung stehen-
den Speicher

Durch das Aufteilen des Automaten sind zur Berechnung des Ausgangssignals jetzt
zwei Tabellenzugriffe nötig. Dadurch ist der Speicherverbrauch um den Faktor zehn
gesunken. Dieses Prinzip läßt sich nicht immer anwenden, soll jedoch, um eine all-
gemeine Aussage treffen zu könnnen generalisiert werden. Gehen wir also davon
aus, daß jedes nicht interaktive Programm, welches Ein- und Ausgaben erzeugt,
durch eine variable Zahl an Tabellenzugriffen realisiert werden kann. Trägt man die
Größe aller Tabellen über die Zahl der Tabellenzugriffe auf, erhält man ein unge-
fähres Performance-Memory-Modell. In diesem Diagramm läßt sich ablesen, welche
Möglichkeiten man als Kompromiß zwischen Speicherverbrauch und Geschwindig-
keit offen hat. Generell wird eine effiziente Lösung immer in der Nähe der stärksten
Rundung zu finden sein.

Dieses Modell ist leider noch zu primitiv, um der Wirklichkeit zu entsprechen. Die
Zugriffszeit ist nämlich für alle Tabellen gleich angenommen worden. In der Rea-
lität muß jedoch, um eine um Größenordnungen verschiedene Speichermenge zu
realisieren, auf unterschiedliche physikalische Technologien zurückgegriffen werden.
Lassen sich heute mehrere Kilobytes in kleinen Caches mit denselben Taktraten
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Abbildung 6: Qualitativer Verlauf der Geschwindigkeit über dem zur Verfügung stehen-
den Speicher unter Berücksichtigung von zunehmenden Zugriffszyklen

wie der Prozessor ansteuern, muß man zur Realisierung mehrerer Megabytes be-
reits mehrere Wartezyklen der CPU einkalkulieren. Bringt man dieses Wissen in das
Geschindigkeits-Speicherverbrauch-Diagramm mit ein, erhält man eine Kurve mit
einem Maximum. Ziel des Optimierungsverfahrens ist es jedoch nicht, dieses Maxi-
mum zu treffen. Schließlich gibt es noch andere Gründe, wie zum Beispiel Kosten,
Systemgröße und Verfügbarkeit, welche bei der Realisierung eines Systems eine Rolle
spielen. Es sollte jedoch bei der Implementierung berücksichtigt werden. Weiterhin
sollte man sich merken, daß Funktionen schon durch Einsatz kleiner Tabellen deut-
lich beschleunigt werden können und daß große Tabellen durch Trennung verkleinert
werden können. Bei der Optimierung der Funktionsblöcke ist jeweils versucht wor-
den, den Arbeitsaufwand mit Hilfe von Tabellen zu verringern.
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4 Systemanalyse

4.1 Informelle Analyse

Ziel der informellen Analyse soll es sein, einen Überblick über die gestellte Aufgabe
zu geben. Dabei sollen vor allem die Grenzen des Systems abgesteckt werden und
absehbare Probleme angesprochen werden. Es soll informiert werden, jedoch noch
nicht spezifiziert, um der Kreativität bei der Umsetzung genug Freiraum zu lassen.

4.1.1 Modularer Aufbau

Einer der Hauptansprüche an das zu entwickelnde System ist die Forderung, es dy-
namisch weiterentwickeln zu können. Dabei wird davon ausgegangen, daß für eine
optimale Ausnutzung der Hardwareressourcen auch eine Anpassung der Software
in unterster Ebene notwendig ist. Das Grundsystem soll also durch austauschba-
re Module gebildet werden. Die Größe eines Moduls ist zunächst völlig willkürlich
wählbar, kann aber durch eine rationale Trennung des Systems ein in sich struktu-
riertes Design bestimmen. Die Grenzen eines Moduls werden also durch vom System
logisch definierte Grenzen vorgegeben. Um dennoch eine Flexibilität in der Größe
der auszutauschenden Softwareteile zu bieten, wird die funktionale Programmie-
rung, die Hochsprachen anbieten, zu Hilfe gezogen. Das Problem wird also zunächst
in logisch zusammenhängende Blöcke unterteilt. Diese werden dann wieder funktio-
nal mittels der Hochsprache realisiert und bilden eine weitere hierarchische Schicht.
Zwischen den einzelnen Modulen liegen definierte Schnittstellen, deren Anforderun-
gen beim Austausch eines Moduls erfüllt werden müssen. Bei einer Neudefinition
einer Schnittstelle müssen beide Module auch neu angepaßt werden. Das bedingt
einen höheren Aufwand aber auch den größtmöglichen Freiheitsgrad. Grundsätzlich
sollten die Module jedoch in sich geschlossen bleiben.

4.1.2 Evolutionäre Softwareentwicklung

Das freie Entwicklungskonzept ohne detailiert vorgeschriebene Spezifikation ent-
spricht dem evolutionären Softwarekonzept. Vorteil dieses Vorgehens ist vor allem
die schnelle Entwicklungszeit. Da an Spezifikation, Design und Validierung gleich-
zeitig gearbeitet werden kann und keine explizite Kontrollphase vorgeschrieben ist,
können Änderungen und Evolution sehr schnell stattfinden. Der besondere Nach-
teil der fehlenden Kontrollphasen ist ein zunehmend unstrukturierter Sourcecode.
Diesem soll durch die vorangehende Modularisierung und die Einführung definier-
ter Schnittstellen entgegengewirkt werden. Sie ermöglichen dem Entwickler, sich auf
einen begrenzten Bereich des Softwareprojekts zu beschränken. Die Definition des
evolutionären Konzepts sowie andere Konzepte läßt sich in [23] nachlesen.

4.1.3 Unterscheidung zwischen Entwicklungs- und Zielsystem

Grundsätzlich ist Die hardwareunabhängigkeit des Konzepts auf Systeme beschränkt,
die von den verfügbaren Werkzeugen unterstützt werden. Oberste Priorität genießt
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dabei der Hochsprachencompiler, ohne den das Softwarekonzept nutzlos ist. Durch
den Einsatz von Crosscompilern kann das Konzept in ein Entwicklungssystem und
ein Zielsystem getrennt werden. Die Ansprüche an das Entwicklungssystem sind
dabei andere als die des Zielsystems. Die an das Entwicklungssystem gestellten
Anforderungen beinhalten die Forderung den Compiler, das Make-Utility und ein
hierarchisches Filesystem zu unterstützen. Bei der Portierung auf eine andere Ent-
wicklungsplattform müssen Änderungen an der Software vorgenommen werden. Das
Konzept läßt sich jedoch übernehmen.

4.1.4 Benötigte Module des COFDM-Encoders

Der COFDM-Encoder besitzt vier Schnittstellen zur Außenwelt: zum einen die Ein-
gabeschnittstelle des ETI-Datenstromes, zum zweiten die Ausgabe des zeitdiskreten
Ausgangssignals und zum dritten das Bedienteil mit Status Ein- und Ausgabe. Dazu
kommt noch eine Zeitreferenz. Die Ein- und Ausgaben sind prinzipiell von der ver-
wendeten Hardware abhängig. Sie sollten trotzdem als jeweils eigenständiges Modul
gekapselt werden, um der nachfolgenden Berechnung den größtmöglichen Freiraum
zu gewähren. Die funktionalen Blöcke der eigentlichen Modulatorsoftware können
nach dem Festlegen der Außenschnittstellen frei gewählt werden und sollten nach
logischer Zusammengehörigkeit gewählt werden.

4.2 Strukturierte Analyse

Ensemble-
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Audio/Daten

Service-

adaption

Netzwerk- Transport
netzwerk

Netzwerk-
adaption

Netzwerk-
adaption
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COFDM

Abbildung 7: Oberstes Datenflußdiagramm für den COFDM-Encoder

Der Sinn der strukturierten Analyse ist es, eine präzise und vollständige Be-
schreibung des Systems zu liefern, um eine systematische oder parallele Umsetzung
der einzelnen Teile zu ermöglichen, ohne dabei mit Überraschungen konfrontiert zu
werden. Eine vollständige strukturierte Analyse des COFDM-Encoders findet sich
in [21] und lag zu Beginn der Arbeit vor. Die Analyse bezieht sich dabei auf das
realisierte Gerät, welches zusätzliche Funktionalität bietet, die über das eigentliche
Modulationsverfahren hinausgeht. Bei der nun realisierten Aufgabe wurde die Ana-
lyse auf die zur Kanalkodierung und OFDM-Modulation benötigten Teile reduziert.
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4.3 Design

4.3.1 Grenzen des Designs

Da das Design der COFDM-Software selber einem dynamischen Prozeß unterwor-
fen werden soll, sind einer endgültigen Form der strukturierten Darstellung Grenzen
gesetzt. Das realisierte System stellt eine Umsetzung aller zur Erzeugung des Aus-
gangssignals nötigen Teile dar. Gerade die hardwareabhänigen I/O-Prozesse sind
jedoch nur in Ansätzen implementiert, sodaß sich das System testen läßt. Das ent-
wickelte System ist als Grundlage zu verstehen, auf dessen Basis endgültige Versio-
nen für einen COFDM-Modulator entstehen können. Dementsprechend stehen viele
EXE-Files zur Verfügung, die unterschiedliche Funktionen erfüllen.

4.3.2 Aufbau der Hierarchien des Entwicklungssystems

Abbildung 8: Hierarchische Schichten, in denen unterschiedliche Module entwickelt wer-
den können.

Um ein hierarchisches Konzept für den COFDM-Modulator umzusetzen, wird auf
die Dateistruktur des Betriebssystems zurückgegriffen. Innerhalb des Make-Utilitys
wird dabei festgelegt, in welche Pfade verzweigt wird. Es gibt dabei drei unterschied-
liche hierarchische Schichten. Zwei davon werden durch das Filesystem repräsentiert
und vom Make-Utility kontrolliert, die dritte entspricht einem Funktionsaufruf und
ist verbindlich. Für diese letzte Schicht sind die Schnittstellen in Headerdateien
festgelegt. Das Makefilekonzept unterstützt dabei durch die Angabe unterschiedli-
cher Variablen die Auswahl der verwendeten Module. So können für unterschiedliche
Zielplattformen auch unterschiedliche Module zusammengefügt werden. Die Compi-
ler können ebenfalls durch die Vergabe einer Präprozessorvariablen die ausgewählte
Zielplattform zur Zeit des Kompilierens identifizieren und so spezifischen Code ge-
nerieren.
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Abbildung 9: Struktur des COFDM-Encoders

4.3.3 Aufbau des COFDM-Encoders

Der COFDM-Encoder ist im wesentlichen durch eine Bibliothek repräsentiert. Die
Bibliothek ist in sich geschlossen und enthält neben den Modulationsfunktionen noch
Module zum Messen der Zyklenzahlen einer Routine und zum Speichern von Ausga-
ben. Die Ausgabe Ablaufinformationen kann an oder ausgeschaltet werden. Normale
Ausgaben benötigen jedoch die vom Laufzeitsystem oder Betriebssystem zur Verfü-
gung gestellten Ein- und Ausgabefunktionen. Alle sonstigen Ein- und Ausgabeope-
rationen sind aus der Bibliothek ausgeschlossen worden, da sie von der verwendeten
Zielplattform abhängen.

4.4 Hardwareunabhängigkeit

Eine weitere Anforderung an das System ist die Portierbarkeit auf andere Hard-
wareplattformen. Prinzipiell gibt es sehr unterschiedliche Formen der Hardware, zum
Beispiel ’Programmable Grid Arrays’,’PLD’s’ ’ASIC’s und ’Digitale Signal Prozesso-
ren’, DSP’s. Um das Softwarekonzept einschränken zu können, wurden als mögliche
Zielplattformen allem voran ”all purpose DSP’s” gewählt. Es ist möglich die Soft-
ware oder Teile davon, als Grundlage für andere Hardwarebeschreibungssprachen,
wie zum Beispiel VHDL, zu verwenden. Dafür ist jedoch die Erstellung eines neuen,
eigenständigen Konzeptes notwendig.

4.5 Programmiersprache

Für DSP-Plattformen gibt es in der Regel Entwicklungsumgebungen, welche Hoch-
sprachencompiler und Simulator enthalten. Eine direkte Hardwareanpassung ist des-
halb nicht notwendig. Als mögliche Hochsprachen sollen hier C, Ada und Java mit-
einander verglichen werden.
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4.5.1 Java

Das Konzept der hardwareunabhängigen Software verfolgt auch JAVA. Bei dieser
Sprache wird das JAVA-Programm zunächst in einen Byte-Code übersetzt. Erst
dieser Byte-Code wird auf der Hardware ausgeführt oder emuliert. Dadurch wird
im Prinzip eine weitere Schicht eingeführt, zu der sich auf beiden Seiten eine stan-
dardisierte Softwareschnittstelle befindet. JAVA ist eine C++ ähnliche Sprache. Sie
ist jedoch überwiegend für die Entwicklung graphischer Oberflächen gedacht. Pro-
blematisch bei einer Umsetzung in JAVA ist vor allen Dingen die Abarbeitungs-
geschwindigkeit. Da die Sprache auf einer standardisierten Schnittstelle aufsetzt,
bleibt für hardwarenahe Maschinenbefehle und Optimierungen kaum Platz. Ebenso
ist die Erweiterung eines auf JAVA aufbauenden Softwarekonzepts um maschinenna-
he Konstrukte wie zum Beispiel Assembler nicht möglich. Da generell eine effiziente
Methode gesucht wird, ist JAVA aufgrund der Ausführungsgeschwindigkeit nicht
geeignet.

4.5.2 Ada

ADA ist aus dem Wunsch nach Vereinheitlichung bei unterschiedlichen Software-
projekten entstanden und findet vor allem in vielen staatlichen Projekten Verwen-
dung. Ada ist eine ausgezeichnete Large-Scale Programmiersprache. Sie enthält bei-
spielsweise Sprachkonstrukte für Interprozeßkommunikation und Synchronisation.
Die Umsetzung eines effizienten COFDM-Modulators setzt jedoch vor allem die
Entwicklung kleiner, schneller und speichersparender Funktionen voraus.

4.5.3 C

C ist von sich aus sehr hardwarenah. In dieser Hochsprache geschriebene Program-
me können sehr direkt auf die anschließende Assemblerebene übertragen werden.
So ist eine Optimierung des Programms bereits in der Hochsprache möglich. Eine
Anbindung von Assemblersprache und die damit verbundene hardwarenahe Anpas-
sung auf niedriger Ebene ist ebenfalls möglich. Weiterhin ist C eine sehr verbreitete
Sprache. Ein entsprechender Compiler ist für nahezu jede Prozessorumgebung vor-
handen. Eine weitere Spezialität der Sprache ist die Unterstützung verschiedener
Wortgrößen bei Integer- und Floatingpointdatentypen, die eine effiziente Ausnut-
zung des verfügbaren Speichers ermöglichen. Aus diesen Gründen wurde C für die
Implementierung des COFDM-Enkoders gewählt.
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5 Implementierung

5.1 Benutzte Werkzeuge/Umgebung

Die für die Softwareentwicklung nötigen Werkzeuge wurden von der Firma Bosch
zur Verfügung gestellt. Zum Aufbau des hardwareunabhängigen Konzeptes diente
hauptsächlich das GNU ’make’-tool. Die Flexibilität und die Menge an Kommandos,
die dieses Werkzeug beinhaltet, machten ein ebenso flexibles all-in-one Gerüst für
die Bibliothek möglich. Grundsätzlich läßt sich das Problem auch mit weniger kom-
fortablen ’make’-Programmen lösen, eine Portabilität auf dieser Ebene ist jedoch
nicht vorgesehen.

Als Compiler diente sowohl für Linux- als auch für Sun-Systeme der GNU-Compiler.
Für das Testsystem mit dem Signalprozessor wurden spezielle Crosscompiler der
Herstellerfirma zur Verfügung gestellt. Das Make-File Gerüst mußte für diese Compi-
ler extra angepaßt werden. Die Anpassung der Makefiles an die Kommandozeilenop-
tionen sowie die Syntax für spezielle Einstellungen des Compilers muß für jeden neu-
en Compiler vorgenommen werden. Prinzipiell sind den Möglichkeiten jedoch kaum
Grenzen gesetzt. Der Aufwand ist beschränkt, jedoch muß das Makefile-konzept
bekannt sein. Zum Linken von Bibliotheken sind Archivierungstools der jeweiligen
Zielplattform zum Einsatz gekommen.

Als Beispielhardware ist der Prozessor TMS320C6201 von TexasInstruments zu ver-
wenden. Da Prozessoren einer sogenannten Familie angehören, die vom Befehlssatz
und den verfügbaren Werkzeugen her nahezu identisch sind, können die Ergebnisse
auf alle Schwesterprozessoren übertragen werden. Zu der Familie des C6201 gehören
alle Prozessoren, deren Bezeichnungen mit TMS320C6 beginnen. Besonders inter-
essant ist dabei die Ankündigung des Floatingpoint-Prozessors TMS320C67xx. Der
C6201 ist ein reiner Integer-Prozessor. Floatingpointoperationen werden zwar un-
terstützt, werden jedoch durch Software emuliert und benötigen dementsprechend
viel Rechenzeit.

5.2 Der COFDM-Modulator als Echtzeitsystem

Der COFDM-Modulator erhält als Eingaben einen ETI-Strom, ein Zeitsignal und
Modusinformationen durch ein Bedienpult. Die dazu gehörenden Aufgaben sind die
Erzeugung des Basisbandsignals, die Synchronisation mit dem Zeitsignal und die
Interpretation und Ausgabe der Reaktion auf Bedienereingaben hin. Ist die Verar-
beitung der einzelnen Schritte schnell genug, kann auf ein System mit konkurrieren-
den Prozessen verzichtet werden. Die einzelnen Arbeitsschritte können als getrennte
Prozeduren realisiert werden, die nacheinander aufgerufen werden.

Die Bearbeitung der Bedienerinformationen stellt dabei keine hohen Anforderun-
gen an das System. Es handelt sich dabei in erster Linie um das Setzen und Lesen
des Systemzustandes. Die Zeittoleranzen dürfen für einen Bediener im Bereich von
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Sekunden liegen und sind damit beim Vergleich mit den anderen Aufgaben unkri-
tisch.

Die Synchronisation mit dem Zeitsignal stellt eine harte Grenze für die Erzeugung
des Basisbandsignals dar. Grundsätzlich gilt, daß der Prozeß zur Berechnung des
Signals schon vor der Synchronisation mit dem Zeitsignal angestoßen werden muß.
Die Synchronisation kann dann über einen Zwischenpuffer erfolgen, dessen Inhalt
synchron zum Zeitsignal ausgegeben wird. Die Dimensionierung dieses Speichers
hängt sowohl von der Berechnungsweise des Signals, als auch von deren Berech-
nungsdauer ab. Durch einen entsprechenden Algorithmus ist hier eine Minimierung
an die Systemvoraussetzungen möglich.

Die Berechnung des Basisbandsignals stellt die Hauptaufgabe des Systems dar. Sie
ist auch die aufwendigste Aufgabe und bestimmt somit maßgeblich die Dimensio-
nierung des Systems. Grundsätzlich muß das Signal kontinuierlich erzeugt werden.
Um diese kontinuierliche Aufgabe in endliche Schritte endlicher Berechnungszeit zu
unterteilen, muß das Signal im Zeitbereich ebenfalls in endliche Segmente, die un-
abhängig voneinander berechnet werden können, unterteilt werden. Hinzu kommt
ein Pufferspeicher, aus dem das Signal gelesen werden kann, während der Prozessor
sich den anderen Aufgaben widmet. Dieser Pufferspeicher kann gleichzeitig zur Ab-
schwächung der sonst harten Grenze für die Erzeugung des Signals dienen.

Prinzipiell läßt sich die Größe eines zu berechnenden Signalabschnitts im Zeitbe-
reich frei wählen. Je nach Größe werden jedoch unterschiedliche Anforderungen an
die Berechnungsgeschwindigkeit und den Zwischenspeicher gestellt. Die Antwortzeit
hängt von der Berechnungszeit für ein Segment ab. Sie ist unabhängig von der Hard-
ware und logischerweise minimal für einen möglichst kurzen Teilabschnitt. Folglich
sollte das Signal in möglichst kleine Teilstücke heruntergebrochen werden. Setzt man
für die Erzeugung des Signals die Berechnung mittels einer Fouriertransformation
voraus, ist das kleinste unabhängig voneinander berechenbare Teilstück des Signals
ein Symbol. Der Funktionsaufruf für die Berechnung eines Symbols ist endlich und
mit einem finiten Automaten darstellbar.

Für die realisierte COFDM-Modulator-Software ist somit ein Symbol als kleinster zu
berechnender Signalabschnitt gewählt worden. Da die Struktur des COFDM-Signals
einen logischen Aufbau von mehreren Symbolen, einen DAB-Rahmen, vorsieht, ist
im Programm ein aufwendigerer Algorithmus nötig, der den Zustand der Symbol-
berechnung innerhalb eines Rahmens speichert und auswertet.

Obwohl der größte Teil der Berechnungen für die Symbole aufgewendet werden
muß, hängt die Einhaltung der Zeitschranken auch von zufälligen Ereignissen ab.
Insbesondere ist hier die Berechnung des Reed-Solomon-Encoders zu erwähnen. Der
benötigte Aufwand hängt davon ab, ob die Daten fehlerfrei oder fehlerbehaftet am
COFDM-Encoder ankommen. Die Rechenzeit ist bei maximaler Fehlerzahl etwa
doppelt so hoch wie bei Fehlerfreiheit. Das gleiche Symptom verursacht ein Wechsel
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im Multiplex oder ein fehlerhafter CRC. Prinzipiell läßt sich das System so defi-
nieren, daß auch im ungünstigsten Fall die harte Grenze immer eingehalten werden
kann. Es gäbe allerdings auch die Möglichkeit, durch ein gezielt fehlerhaftes Si-
gnal die “firm-time-requirements” weiter abzuschwächen. So könnte die Berechnung
der Senderkennung (TII) entfallen oder statt einer Fehlerkorrektur ein “muting”,
ein Überdecken des fehlerhaften Signals, durchgeführt werden. Prinzipiell soll der
COFDM-Encoder jedoch auch bei fehlerhaftem Signal ein möglichst stabiles Signal
liefern.

5.3 Prozeßoptimierung

In den folgenden Kapiteln sollen Ansätze zur Optimierung des COFDM-Enkoders
aufgeführt werden. Die Optimierungen beziehen sich dabei auf die algorithmische
Ebene. Es Übersicht über den generellen trade-off zwischen Speicher und Geschwin-
digkeit wird in [?] gegeben. Anschließend werden die arbeitsintensiven Funktionen
des COFDM’s einzeln besprochen.

5.4 Cyclic Redundancy Check

Der CRC “cyclic redundancy check” gehört zu den linearen, zyklischen Blockcodes.
Blockcodes heißen so, weil jeweils einem Block mit K Eingangsbits ein Block mit
N Ausgangsbits zugeordnet wird, wobei N > K gilt. Zyklisch heißt der Code, weil
ein Rotieren des Codewortes nach links oder nach rechts wieder ein Codewort er-
gibt. Linear heißt der Code, weil er mit Hilfe der Modulo-2-Arithmetik algebraisch
beschrieben werden kann. Der im ETI Multiplex verwendete CRC ist ein systemati-
scher Code. Das heißt, daß die Eingangsfolge von Datenbits auch genauso im zuge-
ordneten Codewort wieder vorkommt. Das Codewort wird praktisch durch Anfügen
von zusätzlichen Bits gewonnen. Diese Bits werden auch Paritybits oder Prüfstellen
genannt.

Zyklische Codes zeichnen sich durch eine einfache Berechnungsmöglichkeit mittels
der Polynomarithmetik aus. Die Koeffizienten des Polynoms sind die Binärstellen
eines Vektors. Zwei Koeffizienten werden über die Modulo-2-Arithmetik verknüpft.
Diese Rechenweise entspricht dem Rechnen in einem finiten Feld. Die Koeffizien-
ten für den CRC stammen dabei aus dem Galois-Feld GF(2) mit den Elementen 0
und 1. Die Codeworte des CRC-Codes werden prinzipiell durch Multiplikation eines
Eingangspolynoms mit einem Generatorpolynom g(d) erzeugt:

f(d) = h(d) · g(d)

Der Grad von h(d) ist K und der von f(d) ist N. Daraus folgt, daß der Grad
von g(d) k = N − K beträgt. Bei der Dekodierung wird das erhaltene Codewort
f ′(d) = f(d) + e(d) wieder durch das Generatorpolynom geteilt und kontrolliert, ob
das Restpolynom gleich 0 ist. Ist das der Fall, wird davon ausgegangen, daß kein
Übertragungsfehler stattgefunden hat.
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Dieses Vorgehen erzeugt jedoch in der Regel keinen systematischen Code. Um die
Eingangsfolge in das Codewort zu integrieren, wird etwas anders vorgegangen. Die
Eingangsfolge wird zunächst durch Multiplikation mit dk auf die Größe eines Co-
dewortes gebracht. Anschließend wird das nächstgrößere Polynom gesucht, welches
durch das Generatorpolynom teilbar ist und dieses als Codewort dem Eingangspoly-
nom zugeordnet. Dieses geschieht einfach durch Division der vergrößerten Eingangs-
folge dk

· h(d) durch das Generatorpolynom. Der Rest der Division wird einfach zu
der vergrößerten Eingangsfolge hinzuaddiert und ergibt das gesuchte Codewort.

f(d) = dk
· h(d) + modulo(dk

· h(d), g(d))

Die Multiplikation dk bedeutet einfach das Anfügen von k Nullen an das Polynom.
Das Generatorpolynom für den im ETI-Mux verwendeten CRC lautet:

g(d) = d16 + d12 + d5 + d1

Eine eindeutige Zuordnung zu Codewörtern ist nicht für beliebig lange Eingangsse-
quenzen möglich. Das Polynom g(d) stellt zugleich das Polynom niedrigsten Grades
dar, welches ein Codewort ist, da g(d) = g(d) ∗ 1. Das erste Polynom, welches durch
g(d) teilbar ist, jedoch kein Polynom des Codes mehr sein kann, ist d216−1

+1. Würde
es ein Codewort sein, müßte auch seine zyklische Vertauschung d+1 Codewort sein.
Dieses Polynom besitzt jedoch einen geringeren Grad als g(d). Die Codewortlänge
beträgt also 216−1

− 1 = 32767 Bits.

Für die Berechnung der CRC Paritybits sind die führenden Nullen eines Eingangs-
polynoms nicht relevant. So können auch kurze Eingangssequenzen effizient codiert
werden, indem die Nullen einfach übersprungen werden. Werden die führenden Nul-
len erst gar nicht übertragen, spricht man von einer Verkürzung des Codes.

Für die Berechnung des CRC’s verlangt die Spezifikation außerdem, daß das CRC-
Register zu Beginn und am Ende der Division invertiert wird. Dadurch werden die
zyklischen Eigenschaften des Codes wieder aufgehoben. Ein um ein Bit verschobe-
nes Codewort wird jetzt als Fehler erkannt. Weiterhin bestehen die Paritybits einer
Nullfolge nicht aus Nullen.

Dieser CRC detektiert:

1. alle Fehlermuster mit ungeradem Gewicht

2. alle Fehlermuster mit Gewicht< 5

3. alle Bündelfehler mit einer Länge von 16 Bit

4. wenigstens 99.997% aller Fehlerbündel der Länge 17 und größer
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5.4.1 Optimierung des CRC’s

Die Polynomdivision kann mittels eines rückgekoppelten Schieberegisters erfolgen.
Die bitweise Nachbildung dieses Prozesses in Software ist jedoch ineffizient. Bes-
ser ist es, eine größere Zahl an Eingangsbits zu betrachten. Geht man der bitweisen
Nachbildung analytisch für mehrere Bits nach, erhält man ein Bool’sches Gleichungs-
system, mit dem sich der nächste Zustand des CRC-Registers berechnen läßt. Diese
Funktionen lassen sich nun zum Beispiel mit Quine-McClusky-Verfahren optimie-
ren. Ebenso können sie in einer Tabelle nachgeschlagen werden. Die im Rahmen
dieser Diplomarbeit erstellte Bibliothek stellt diesen 16 Bit CRC mit einem tabel-
lengestützten Verfahren zur Verfügung. Dabei werden die Eingaben in Blöcken von
je 8 Bit verarbeitet. Die Tabelle besitzt demnach eine Größe von 256 Einträgen mit
jeweils 16 Bit pro Eintrag für den Zustand des CRC-Registers.

5.5 Pseudo Random Binary Sequence

Ähnlich wie der CRC besteht auch die PRBS aus einer Divisionsschaltung. Das
Generatorpolynom muß in diesem Fall ein primitives Polynom sein. In der Folge der
Berechnung treten alle möglichen Polynome mit Ausnahme des Nullpolynoms als
Rest auf. Das verwendete primitive Polynom lautet

f(d) = d9 + d5 + 1

Die Periode der damit erzeugten Bitfolge beträgt 29
− 1 = 511 Bit. Neben der

Möglichkeit, die PRBS durchgehend zu berechnen, steht hier die Möglichkeit offen,
einfach die gesamte Sequenz im Speicher abzulegen. Damit läge der Speicherauf-
wand für die PRBS auch bei 511 Bit. Da jedoch zum Verknüpfen eines Wortes
mit einer beliebigen Sequenz der PRBS die Wortgrenzen der Speicheraddressierung
überschritten werden können, sind zusätzliche Shift-Operationen nötig. Um dies zu
vermeiden, ist in der realisierten PRBS nicht eine, sondern 32 PRBS-Folgen hin-
tereinander abgespeichert. So ist jede beliebige PRBS-Sequenz auch in passenden
Wortgrenzen zur Addressierung vorhanden. Der Speicherverbrauch liegt zwar jetzt
bei 511 · 32 Bit, zum Verknüpfen eines Wortes mit der PRBS ist jetzt jedoch nur ein
Speicherzugriff und eine Exor-Funktion nötig.

5.6 Convolutional Coder und Punktierer

Der Convolutional Coder erzeugt den Fehlerschutz für die Übertragung. Die Code-
rate verringert sich dabei auf 1/4. Zu jedem Eingangsbit wird eine Folge aus 4
Ausgangsbits in Folge gebildet. Um die Coderate anschließend wieder anheben zu
können, werden nach bestimmten Mustern wieder bis zu 3 der 4 Bits verworfen.
Diesen Vorgang nennt man auch Punktieren. Die Coderate wird damit von 8/9 bis
8/32 in 24 Stufen einstellbar.

Auch hier wurde ein tabellengestütztes Verfahren entwickelt. Betrachten wir da-
zu zuerst alle nötigen Ein- und Ausgabedaten. Der Zustand des Coders ist durch die
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Abbildung 10: Berechnungsvorschrift des Faltungskodierers

sechs Schieberegister bestimmt. Versucht man, Coder und Punktierer zusammen in
einer Funktion zu realisieren, benötigt man den Punktierindex von 1 bis 24 dazu, die
mit 5 Bits codiert werden können. Das macht zusammen schon 6+5 = 11 Bit. Dazu
kommt noch eine frei wählbare Zahl an Eingabebits. Die Tabelle wächst dabei sehr
schnell. Um die Größe zu reduzieren, wurde versucht, Coder und Punktierer wieder
zu trennen. Als Eingangsgröße wurden 4 Bits gewählt, so daß sich die Tabelle für
den Convolutional Coder auf 26+4 = 1024 Einträge beläuft. Jeder Eintrag besitzt
aufgrund der Coderate von 1/4 eben 4 ·4 = 16 Bits als Ausgang. Die Tabelle für den
nachfolgenden Punktierer würde also 216+5 Einträge benötigen. Dies läßt sich, da
jeweils 2 Ausgangsbits pro Eingangsbit des Codierers identisch sind, noch auf 212+5

verringern. Da das immer noch zuviel ist, wurde auf ein Tabellenverfahren verzichtet
und der Punktierer rein algorithmisch implementiert.

Ergebnis des tabellengestützten Verfahrens für den Convolutional-Coder ist eine
Veränderung des Worst-Case-Verhaltens. Die ursprüngliche Funktion, die die 4 Aus-
gangsbits sequentiell berechnete, besaß den größten Aufwand für die Berechnung der
ersten beiden Ausgangsbits. Das entspricht einer Coderate von 8/16. Da die Zeit zur
Berechnung der Convolutional Coded Bits durch den Tabellennachschlag konstant
gehalten wird, hängt der Zeitaufwand für den neuen Coder von der Zahl der Tabel-
lennachschläge insgesamt ab. Werden 3 der 4 Ausgangsbits wieder verworfen, muß
pro Ausgangsbit in diesem Fall ein Tabellennachschlag durchgeführt werden. Der
maximale Aufwand muß also bei einer Coderate von 8/9 betrieben werden. Dieses
muß bei der Untersuchung des COFDM-Modulators auf seine Echtzeitfähigkeiten
hin berücksichtigt werden. Insgesamt ergab sich eine Speed-Up-Verbesserung des
Worst-Case um den Faktor 1,5 für das tabellengestützte Verfahren. Für den Best-
Case bei einer Coderate von 1/4 ergab sich sogar ein Speed-Up von Faktor 3.
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5.7 Reed-Solomon Dekoder

Auch der Reed-Solomon-Code gehört zu den linearen, zyklischen Blockcodes. Dazu
sind RS-Codes eine Untermenge der BCH-Codes.

RS ⊂ BCH ⊂ zyklisch ⊂ linear ⊂ Blockcode

Auch der Eingangsvektor des RS-Code wird als Polynom aufgefaßt. Genau wie beim
CRC lassen sich die Paritybits durch Polynomdivision berechnen. Wesentlicher Un-
terschied ist jedoch, daß die Koeffizienten des Polynoms nicht aus dem Galois-Feld
GF (2) sondern aus GF (28) stammen. Es werden also jeweils 8 Bit zu einem Koeffi-
zienten zusammen gefaßt. Das Generatorpolynom wird als Produkt von k Wurzeln
gebildet:

g(d) =

k
∏

i=0

(d − αl+i)

5.8 FFT Fehlerberechnung

Natürlich ist die Berechnung der FFT mit einer endlichen Registerbreite mit ei-
nem Fehler behaftet. Art und Größe des Fehles hängen dabei von dem verwendeten
Algorithmus ab. Als Grundlage für die Berechnung soll vom Radix-2 Algorithmus
ausgegangen werden. Betrachten wir aber zunächst das Eingangssignal der FFT,
wie es vom ersten Teil des COFDM-Encoders erzeugt wird. Auffällig ist hierbei, daß
alle Träger die gleiche auf Eins normierte Amplitude besitzen. Sie sind nur in der
Phase gedreht. Problematisch ist die dazu notwendige Darstellung von frac1

√

(2).
Diese läßt sich nämlich nicht genau darstellen. Gleiches gilt für Träger, die linear
vorverzerrt wurden. Auch ihre Werte lassen sich nur fehlerbehaftet darstellen. Der
Fehler beträgt dabei 1

2
2−B wenn B die Zahl der Bits angibt, die für die Darstellung

der Zahl benutzt werden. Die einzelnen Fehler sind unkorreliert und gleichverteilt.
Mit diesem fehlerbehafteten Signal führen wir nun die Rechenoperationen der FFT
durch. Da in jeder Stufe dieselben Rechenoperationen durchgeführt werden, reicht
es, den Fehler für eine Stufe zu berechnen und dann das Ergebnis zu verallgemei-
nern. Der Fehler ist für jede Rechenart individuell zu bestimmen. Es sollen dabei
Gleitkomma- und Fixkommaberechnung sowie spezielle Fixkommaverfahren unter-
sucht werden.

Als Referenz diente eine 64 Bit Floatingpoint FFT. Alle Messungen sind bei 1024
Punkten durchgeführt worden. Die abgebildeten Fehlerdichten stammen von 99 zu-
fällig erstellten Eingangsmustern. Die einzelnen Träger sind dabei vergleichbar dem
COFDM-Signal mit

F (k) = ±maxin ± j · maxin

moduliert worden. Die Signalamplitude des COFDM-Ausgangssignals liegt, da nur
3
4

der Eingangsträger moduliert werden, um diesen Faktor niedriger.

Betrachten wir zunächst eine Stufe einer Radix-2 FFT. Es findet eine komplexe
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Multiplikation statt sowie eine komplexe Addition und eine komplexe Subtraktion.
Addition und Subtraktion verdoppeln den Wertebereich des Ausgangssignals einer
Stufe. Die Multiplikation entspricht nur einer Drehung der Träger und verändert
den Wertebereich nicht. Die Multiplikation findet aber mit ebenfalls fehlerbehaf-
teten Werten statt. Bei diesem reinen FFT-Algorithmus ist der Wertebereich des
Ausgangssignals um den Faktor N größer als der Wertebereich des Eingangssignals.
Dies ist vor allem bei der Fixkommaberechnung zu berücksichtigen. Es werden alle
N Werte miteinander verknüpft. Die Summe aller Operationen hängt ebenfalls von
der Zahl der Samples N ab. Der relative Fehler wird sich also für große Werte von N
auch vergrößern. Bei der Fehlermessung ging es haupsächlich darum festzustellen,
wieviele der für Real- und Imaginärteil verwendeten Bits nach der Berechnung noch
brauchbar sind. Deshalb sind Real- und Imaginärteil als voneinander unabhängig
betrachtet worden.

5.8.1 Floatingpoint
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Abbildung 11: Fehler bei 32 Bit Floatingpoint Berechnung

Bei der Floatingpoint-Darstellung werden die Zahlen über Mantisse und Expo-
nent dargestellt. Die Mantisse gibt dabei die Auflösung der Zahl an, und stellt Zahlen
von 1, 0 bis 1, 99... dar. Der Exponent gibt an, mit welchem Faktor die Mantisse noch
zu multiplizieren ist, um die richtige Größenordnung zu haben. Die Auflösung ist
dabei für jede Zahl aus dem darstellbaren Zahlbereich gleich. Bei einer Addition
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Abbildung 12: Fehlerdichte bei 32 Bit Floatingpoint Berechnung

addieren sich die absoluten Fehler der einzelnen Zahlen. Eine signifikante Vergröße-
rung des gesamten Fehlers findet nur statt, wenn beide Zahlen ungefähr die gleiche
Größe besitzen. Bei einer Multiplikation addieren sich die relativen Fehler. Da die
Multiplikation jedoch immer mit einem Twiddle-Faktor stattfindet, dessen Fehler
immer in der Größenordnung der Auflösung liegt, kommt jedesmal nur ein prozen-
tual ungefähr gleichgroßer Fehler hinzu.

Da das Ausgangssignal um den Faktor N größer ist als das Eingangssignal, rela-
tivieren sich auch die Fehler entsprechend. Es werden insgesamt N fehlerbehaftete
Werte zueinander aufaddiert. Dazu kommt der Fehler durch die Multiplikationen.
Der Fehler wird jedoch mit dem Faktor 1

N
bedämpft. Insgesamt ist ein prozentua-

ler Fehler zu erwarten, der nicht größer als das log(N)/2 fache des Eingangssignals
ist. Bei der Messung wird der Fehler eines 32 Bit Floatingpoint-Formats mit dem
eines 64 bittigem verglichen. Die Messung fand bei N = 1024 Punkten und einem
Eingangssignal bestehend aus 1024 QPSK-modulierten Trägern statt. Es zeigt sich,
daß der praktisch zu erwartende Fehler noch deutlich unter dem Schätzwert liegt.

5.8.2 Fixpoint

Die Rechenweise im Fixpoint-Format wurde in Kapitel 3.5 schon angesprochen. Da
beim Addieren zweier Fixpunktwerte kein Rundungsfehler entstehen kann, läßt sich
zur Berechnung des theoretischen Fehlers ein vereinfachtes Blockschaltbild angeben.
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Abbildung 13: Fehler bei 16 Bit Fixpunkt Berechnung

Zusätzliches Rauschen wird dabei nur durch die Multiplikation erzeugt. Eine Be-
rechnung des theoretischen Fehlers findet sich in [7] und [4]. In der Praxis kann der
Fehler durch ein entsprechendes Berechnungsverfahren noch um die Hälfte reduziert
werden. Dies folgt aus dem speziellen Berechnungsverfahren der komplexen Multi-
plikation. Wie in Kapitel 3.5 schon angesprochen, wird dabei das Ergebnis von zwei
reellen Multiplikationen erst geshiftet, nachdem sie zusammen aufaddiert worden
sind. Dadurch entsteht pro komplexer Multiplikation jeweils nur ein Rundungsfeh-
ler für Real- und Imaginärteil.

Bei dem Eingangszahlraum der FFT muß darauf geachtet werden, daß im Laufe
des Algorithmus kein Überlauf stattfindet. Die maximale Signalamplitude nimmt
um den Faktor N bei der Berechnung zu. Als Eingangswerte für 15 Bit Register
darf deshalb maximal der Wert 15 gewählt werden. Das Ausgangssignal der FFT
besitzt demnach für die 2048 Punkte-FFT des Mode 1 die maximale Amplitude
von 2048 · 15 = 30720. Im COFDM-Encoder darf mit dem Wert 21 ausgesteuert
werden, da die Maximalamplitude wegen der Nullträger um 1

4
niedriger liegt. Als

Maximalamplitude ergibt sich 2048·21· 3
4

= 32256. Die Fehler addieren sich von Stufe
zu Stufe. Pro Stufe kann ein Fehler von ±5 angenommen werden. Dementsprechend
läßt sich der Fehler für die 2048 Punkte FFT des Mode 1 angeben.

5.8.3 Blockgleitkomma

Bei der Blockgleitkommarechnung ist der Zuordnungsfaktor zwischen Integerzahl
und dargestellter Kommazahl nicht fest, sondern wird während des Ablaufes des
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Abbildung 14: Fehlerdichte bei 16 Bit Fixpunkt Berechnung

0 500 1000 1500 2000 2500
−5

−4

−3

−2

−1

0

1

2

3

4

5

Samples

F
eh

le
r 

be
i A

us
st

eu
er

un
g 

32
76

7

Abbildung 15: Fehler bei 16 Bit Blockgleitkomma Berechnung
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Algorithmus dynamisch an den benötigten Zahlraum angepaßt. Dies ist für den
FFT-Algorithmus kein Problem, da der Algorithmus stufenweise abläuft. Der be-
nötigte Zahlraum verdoppelt sich dabei von Stufe zu Stufe. Die Anpassung der
Ausgangszahlen erfolgt entsprechend durch eine Division durch Zwei am Ende ei-
ner Stufe. Insgesamt entspricht das Ergebnis dann einer FFT mit Vorfaktor T1 = 1

N
.

Dadurch, daß die Fehler in den ersten Stufen der FFT stark bedämpft werden,

−8 −4 0 4 8 −8 −4 0 4 8 −8
0

0.005

0.01

0.015

0.02

0.025

0.03

W
ah

rs
ch

ei
nl

ic
hk

ei
ts

di
ch

te

Fehler bei Aussteuerung 32767

Abbildung 16: Fehlerdichte bei 16 Bit Blockgleitkomma Berechnung

sind die am Ende entstehenden Fehler ausschlaggebend. Der Fehler liegt nach der
Fixpointmessung bei ±5 pro Stufe, wird hier jedoch mit dem Faktor 2 bedämpft.
Als Fehler der letzten Stufe bleibt also der Wert 2,5. Die vorhergehende Stufe ist um
den Faktor 2 bedämpft, und liefert also einen Beitrag von 1.25 Bit. Als maximalen
Fehler läßt sich also nach 5 Stufen ein Wert von 4.84 Bit angeben. Da der Fehler der
ersten Stufe nach wenigen Dämpfungen vernachlässigbar ist, sind die Diagramme
auf die 2048 Punkte FFT des Mode 1 übertragbar.

Der maximale Zahlraum des Eingangssignals beträgt bei 15 Bit Registerbreite plus
einem Vorzeichenbit -32767 bis 32767. Nach der Rechnung werden von der Q15 Zah-
lendarstellung noch ld(32767) − ld(4, 84) = 12, 7 Bits fehlerfrei dargestellt. Dieses
Ergebnis wird durch die Messung bestätigt.

Der Aufwand in der innersten Schleife der FFT ist bei diesem Algorithmus jedoch
auch am höchsten. Es kommt zu jedem Operanden eine Shiftoperation hinzu. In der
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Performanceanalyse wird darauf noch einmal eingegangen werden.

5.9 FFT-Implementation

Die IFFT, die im COFDM verwendet wird, besitzt mehr Punkte, als eigentlich für
die Träger nötig wären. Es wird tatsächlich immer die nächste Zweierpotenz ver-
wendet, was ungefähr 4

3
mehr Frequenzen bedeutet. Die zusätzlichen Frequenzen

werden dabei einfach zu Null gesetzt. Da dies in einer höheren Abtastrate resultiert,
sind auch die am Anschluß an den COFDM-Encoder befindlichen Systeme wie der
I/Q-Modulator auf die erhöhte Samplingrate eingestellt. Dadurch, daß ein 1

4
der Fre-

quenzen gleich Null ist, läßt sich auch ein spezieller FFT-Algorithmus finden, der in
den ersten Stufen die Berechnung dieser Werte ausläßt. Der Geschwindigkeitsvorteil
liegt jedoch nur bei etwa 10%.

Die Twiddlefaktoren der FFT können in einer Tabelle gespeichert werden. Die Al-
gorithmen von Texas Instruments verwenden dabei eine spezielle Technik, bei der
jeweils Real- und Imaginärteil des Twiddlefaktors gleichzeitig in ein Register geladen
werden. Dazu ist es aber notwendig, daß die Tabelle eine komplette Sinus- und Cosi-
nusschwingung enthält. Da die Funktionen bis auf eine Phasenverschiebung identisch
sind, kann durch eine geschickte Addressierung die Größe um etwa die Hälfte redu-
ziert werden. Unter Ausnutzung weiterer Symmetrien läßt sich die Tabelle sogar auf
ein Achtel der ursprünglichen Größe reduzieren, dies erfordert jedoch einen nicht
unerheblichen zusätzlichen Rechenaufwand.

5.10 OFDM-Signalpfadoptimierung

Eine Optimierung der FFT ist vor allem bei der Betrachtung des Gesamtsystems
des OFDM-Generators möglich. Es soll dazu der Signalpfad hinsichtlich Optimie-
rungsmöglichkeiten untersucht werden.

5.10.1 FFT-Reversal und FFT-Shift

Der Signalpfad zur OFDM-Generierung enthält mehrere Stufen, die das Signal ledig-
lich umordnen ohne eine Berechung durchzuführen. Dazu gehören das Frequenzin-
terleaving, in welchem die Träger nach der ETI-Spezifikation [1] umgeordnet werden.
Weiterhin gehört ein FFT-Shift dazu, der die negativen Träger des Basisbandsignals
auf die positive Seite spiegelt und letztlich das FFT-Reversal, was die beim Radix-2
Algorithmus verwürfelten Samples wieder in die richtige Reihenfolge bringt. Sinn
einer Optimierung ist es, diese Aufgaben in möglichst einem Schritt auszuführen.
Wird als FFT-Algorithmus ein “decimation in time”-Verfahren benutzt, kann das
FFT-Reversal vor die IFFT verschoben werden. Um FFT-Reversal und -Shift auch
vor die anderen Funktionsblöcke ziehen zu können, muß nur beachtet werden, daß
die zugeführten Signale insbesondere vom TII- und TFPR-Symbolgenerator schon in
der umgeordneten Form vorliegen. Dann können alle Umordnungen zu einem Schritt



5 IMPLEMENTIERUNG 43

zusammengefaßt werden. Die Zuordnung der Träger zu ihrem Platz im umgeordne-
ten Spektrum geschieht am effizientesten über eine Tabelle.

Abbildung 17: Blockschaltbild des realisierten OFDM-Symbolgenerators. Der endgülti-
gen Version fehlt noch eine Vorverzerrung.

5.10.2 Digitale Differentielle Modulation

Das Signal verläßt im Prinzip bei QPSK-Codierung der einzelnen Träger den Bereich
des Digitalen. Es wird anschließend differentiell moduliert und dann der IFFT zuge-
führt. Bei einer linearen Vorverzerrung des Signals im Frequenzbereich muß dieser
Schritt hier berücksichtigt werden. Um den Rechenfehler möglichst gering zu halten,
muß das wertkontinuierliche Signal möglichst weit am Ende des Graphen eingeführt
werden. Es ist möglich, die Einführung von Floatingpoint-Werten bis hinter die dif-
ferentielle Modulation zu verschieben. Die Differenzkodierung der einzelnen Träger
findet dabei noch digital statt. Da das differentielle Symbol pro Träger nur acht mög-
liche Phasen besitzt, läßt es sich mit drei Bit pro Träger zudem sehr platzsparend
darstellen. Im Gegensatz dazu fällt ein wertkontinuierliches Signal mit beispielsweise
16 Bit jeweils für Real- und Imaginärteil ins Gewicht.

Die Berechnung der Phasendifferenz läßt sich ebenfalls optimieren. Die kontinu-
ierliche Berechnung erfordert hier eine komplexe Multiplikation bestehend aus vier
reellen Multiplikationen und zwei Additionen. Es soll an dieser Stelle angemerkt
werden, daß es zu der komplexen Multiplikation,

(a + jb) · (c + jd) = R + jI
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Abbildung 18: 8 phasiger Stern des Übertragungskanals. Angegeben die Kodierung der
4 Phasen der QPSK-Symbole. Die anderen Phasen entstehen durch die
differentielle Modulation.

R = (a · c − b · d)

I = (a · d + b · c)

die wie hier vier Multiplikationen, eine Addition und eine Subtraktion erfordert, eine
alternative Berechnungsmöglichkeit gibt, die nur drei Multiplikationen, jedoch fünf
Addition benötigt.

x = a · (c − d)

y = a + b

z = a − b

R = z · d + x

I = y · c − x
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6 Ergebnisse

6.1 Test des Systems

6.1.1 Gründe für die Entwicklung eines Servers

Eines der Hauptprobleme moderner Softwareentwicklung ist die Validierung dersel-
ben. Für den COFDM-Modulator stehen dafür bestehende Lösungen in der MAT-
LAB Programmierumgebung bereit, deren Berechnungen bloß mit den Ausgaben des
neuen Modulators verglichen werden müssen. Natürlich lassen sich die Ausgaben bei-
der Programme in eine Datei umleiten und anschließend miteinander vergleichen.
Ein nicht so hohes Datenaufkommen und eine damit auch höhere Geschwindig-
keit erreicht eine direkte Anbindung des C-Modulators an die Programmiersprache
von MATLAB. Diese unterstützt jedoch nur einzelne C Funktionsaufrufe. Da der
Modulator im Prinzip nur ein einfacher Automat ist, kann er natürlich in einzel-
ne Funktionsaufrufe unterteilt werden. Dabei müssen aber alle Zustandsvariablen,
die veränderlich sind, zurückgegeben und beim nächsten Aufruf wieder eingelesen
werden. Das verkompliziert die Prozedur und macht sie vor allen Dingen von der spe-
zifischen Implementation der Funktionen abhängig. Um dennoch eine Verbindung
beider Modulatorprogramme zu erreichen, ist eine Client-Server Lösung entwickelt
worden. Die Daten werden dabei über das Filesystem übertragen. Jedoch lassen sich
die beiden Programme einfrieren oder in einen beliebigen Zustand versetzen.

Die Basisfunktionen, die den Kern des COFDM-Modulators darstellen, werden dabei
an ein Userinterface herangeführt und so dem Benutzer individuell zur Verfügung
gestellt. Die Vorteile liegen auf der Hand. Es ist so möglich, den COFDM-Encoder
einzelne Zwischenschritte abarbeiten zu lassen und den jeweiligen Zustand des En-
coders zu prüfen. So lassen sich nicht nur die Endergebnisse beider Programme,
sondern auch Zwischenergebnisse, wie zum Beispiel das digitale Symbol oder das
Symbol im Frequenzbereich, auf ihre Korrektheit hin überprüfen. Ebenfalls kann im
Fehlerfall auch gleich der Istzustand der Software überprüft werden, was Hinweise
auf Ort und Art des Fehlers gibt.

Insgesamt hat sich der COFDM-Server bei dieser Aufgabe als wertvolles Entwick-
lungswerkzeug erwiesen, dessen Einsatz den Abgleich beider COFDM-Versionen un-
gemein erleichtert hat. Auch schwierige Fehler, wie ”dangling pointers”, konnten
schrittweise eingekreist werden. Die Zeit für das Debugging der Software hat sich
drastisch verringert. Auch die Struktur der Software hat sich verbessert. So kann auf
aufwendige Debug-Routinen oder unübersichtliche Debug-Ausgaben im Kerncode
des Projektes verzichtet werden. Ausgaben und Debugging stehen sauber getrennt
in den Kommandofunktionen des Servers.

Zusammenfassend läßt sich sagen, daß die Entwicklung einer Einzelschrittsteuerung
per Kommandozeile für alle Software, die nicht standardmäßig über eine Benutzer-
schnittstelle verfügt, ein lohnender Schritt ist. Darunter fallen Bibliotheken, Signal-
und Datenverarbeitung.
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6.1.2 Aufbau des Servers

Basis des Datentransfers vom und zum Server ist das Filesystem des Betriebssy-
stems. Der Server fällt damit nicht unter das Prinzip der Hardwareunabhängigkeit,
sondern ist auf die Unterstützung des Betriebssystems angewiesen. Dies ist jedoch
nicht nachteilig. Der Server soll ja nicht auf einer beliebigen Zielplattform laufen,
sondern ist als Zusatz zu verstehen. Unterstützt werden sowohl Sun wie auch PC.
Wichtig ist vor allem, daß das Betriebssystem Pipes unterstützt wird.

Die Ein- und Ausgabe der Daten erfolgt über spezielle Dateien, sogenannte FI-
FO’s. Diese haben den Vorteil, daß gelesene Daten gleich wieder gelöscht werden,
so daß der Speicherverbrauch der Dateien gering ist. Der Name stammt von ”first
in, first out” und beschreibt das Verhalten des FIFO’s bei Erhalt und Anforderung
von Daten. Die Daten, die den FIFO als erste erreichen, sind auch die ersten, die
bei einem Lesezugriff auf den FIFO wieder ausgegeben werden. Sind keine Daten im
FIFO vorhanden oder existiert kein Verbraucher, der lesend auf den FIFO zugreift,
werden die Prozesse automatisch vom Betriebssystem blockiert. Das Warten erzeugt
dabei keine Prozessorlast.

Ein Client greift also schreibend auf die Kommandopipeline zu und teilt hierüber
seine Befehle an den Server mit. Diese Kommandopipeline muß dem Client allerdings
beim Start namentlich bekannt sein. Man spricht hierbei von einem Well-Known-
FIFO. Prinzipiell reicht es aus, wenn sich der Client hierüber beim Server anmeldet
und hierbei die Namen der im folgenden verwendetetn Ein- und Ausgabedateien
bekanntgibt. So könnten auch unabhängige Clients individuell bedient werden. Der
COFDM-Server ist jedoch auf sequentielle Abarbeitung ausgelegt. Wenn mehrere
Clients ihre Befehle an den COFDM-Server senden, werden sie vom Betriebssystem
sequentialisiert und in dieser Reihenfolge abgearbeitet. Die Ergebnisse hängen dabei
von der Summe aller gesendeten Befehle ab. Sind nicht alle Eingaben aufeinander
abgestimmt, kann das zu Fehlern führen.

Die Eingaben der Clients werden auf einfache Weise verarbeitet. Beim Parsen des
Textes werden die Eingaben in einzelne Worte, sogenannte Tokens, unterteilt. Al-
le Tokens sind einfache Zeichenfolgen, die durch Leerzeichen voneinander getrennt
sind. Die Art des Befehls ist durch das erste Wort bestimmt. Es wird in einer Tabel-
le gesucht. Anschließend wird in den entsprechenden Programmcode verzweigt. Die
Grammatik, die damit möglich ist, entspricht einer L1 Grammatik. Das von links
nach rechts jeweils nächste Zeichen bestimmt dabei, welchem Zweig nachgegangen
wird. Wird eine Übereinstimmung gefunden, ist der Befehl eindeutig gefunden. Da-
durch, daß ein Befehl durch seinen linken Anfang erkannt wird, kann der Rest des
Kommandos entfallen, sobald der Befehl eindeutig ist. Bei Mehrdeutigkeiten ver-
zweigt der Server zum ersten passenden Eintrag in seiner Tabelle.

Anschließend werden die Zeichenketten an den Interpreter übergeben. Erst hier wird
den Eingaben ein Sinn zugeschrieben. Der Interpreter muß zugleich prüfen, ob Ein-
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Abbildung 19: Abbildung eines Servers mit ausgezeichnetem FIFO zum Datenempfang
und clientspezifischen Rückkanälen

gaben wie Zahlen oder Filenamen in korrekter Syntax stehen und andernfalls eine
Fehlermeldung ausgeben. Dadurch, daß die Befehle in einer Tabelle gehalten werden,
läßt sich der Interpreter sehr leicht durch neue Kommandos ergänzen. Es müssen nur
der Name des Befehls und der dazugehörige Funktionsaufruf in der Tabelle ergänzt
werden.

6.2 Performanceanalyse

Bei der Performanceanalyse geht es darum, eine Aussage darüber zu treffen, ob die
gegebenen Aufgaben von dem Zielprozessor in der vorgeschriebenen Zeit bearbeitet
werden können. Dazu soll zunächst die maximale Last, die dem Prozessor zugemutet
wird, spezifiziert werden.

Die größte Struktur, die dem DAB-Signal inne ist, ist der DAB-Rahmen. Es soll die
Konfiguration gesucht werden, die für einen Rahmen den größten Arbeitsaufwand
verursacht. Der Aufwand bei der Kanalkodierung ist dabei nicht vom DAB-Mode
abhängig. Der aufwendigste DAB-Mode bestimmt sich damit aus der FFT, die für
Mode 1 proportional Symbolzahl · FFT −Aufwand = 77 · 2048 · 11 für 96ms Zeit-
signal ist. Für Mode 4 muß beispielsweise ein Aufwand proportional 77 ·1024 ·10 für
48ms Zeitsignal berechnet werden, also Faktor 10

11
weniger. Mode 1 ist also der zu

betrachtende Fall. Für die Kanalkodierung wurde bereits angegeben, daß die mini-
male Koderate von 8/9 den größten Aufwand erzeugt. Der entsprechende minimale
Fehlerschutz findet sich bei einem Protectionlevel von 5. Der Worst-Case kann je-
doch auch aus einem beliebigen Profil interpoliert werden.

Der DAB-Rahmen des Mode 1 besteht aus 77 Symbolen: Einem Nullsymbol, einem
TFPR-Symbol, 3 Symbolen des “Fast information Channels” (FIC) und 72 Symbo-
len des “Main Service Channels” (MSC). Weiterhin sind für jeden ETI-Rahmen die
CRC-Checks einzurechnen. In Mode 1 sind 4 ETI-Rahmen zur Erzeugung des DAB-
Rahmens nötig. Jeder besitzt einen Header-CRC und einen Body-CRC. Zusammen
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sind also 8 CRC-Berechnungen für Mode 1 nötig. Dazu kommt eine eventuelle Re-
konfiguration, deren Auswirkungen vom Modul <time config> berechnet werden.
Insgesamt muß dieses Modul für jeden ETI-Rahmen einmal aufgerufen werden, je-
doch wird sie ohne vorliegende Rekonfiguration nach wenigen Zyklen abgebrochen.
Eine Rekonfiguration liegt technisch jedesmal beim Start des Programms vor.

Für den Nachweis der Funktionstüchtigkeit bedarf es nicht einer vollständigen An-
passung an das netzwerkabhängige ETI-Format. Zur Messung der Geschwindigkeit
reicht es aus, den Reed-Solomon-Dekoder zu benchmarken, da er der mit Abstand
aufwendigste Prozeß bei der Netzwerkanpassung (NA) ist. Die vollständige Anbin-
dung des ETI-NA Protokolls ist im Rahmen der Arbeit nicht mehr erfolgt. Die
Geschwindigkeit des RS-Kode ist jedoch auch außerhalb des COFDM-Modulators
meßbar und kann auf einen DAB-Rahmen hochgerechnet werden. In der Tabelle
ist der Reed-Solomon-Dekoder und die von ihm aufgerufene Routine <berlekamp>,
die zum Finden des Fehlerpolynoms benutzt wird, enthalten. Für das Profilen des

Algorithmus calls Zyklen/call Zyklen

<overhead> 1 235 235
<berlekamp> 1 17990 17990
<rs correct> 1 269366 269366

Tabelle 1: Profiling Tabelle mit den Zyklen zur Dekodierung eines Reed-Solomon-Codes
der Länge 240 mit 14 Paritybytes und 7 fehlerhaften Bytes

Programms ist ein eigenes Modul in der COFDM-Bibliothek vorgesehen. Dabei muß
berücksichtigt werden, daß der Aufruf der Funktionen und die Abfrage der CPU-
Zyklen selber Rechenzeit benötigt. Die ungefähre Größe dieses Overheads wird durch
die <overhead>-Zeile im Benchmarkprofil angegeben. Sie ist gering, so daß sie prin-
zipiell vernachlässigt werden kann. Zu beachten ist jedoch, daß die Funktionen ver-
schachtelt sein können. So erhöht sich der Fehler für die aufrufende Funktion pro-
portional zur Anzahl der <calls>.

Interessiert man sich jedoch trotzdem für die genaue Zyklenzahl einer Funktion,
kann man die Messung durch Herausrechnen des Overheads verfeinern. Jeder Auf-
ruf (call) einer Funktion, der in der Tabelle angegeben ist, verursacht einmal den in
<overhead> angegebenen Zyklenfehler. Der Overhead ergibt sich aus zwei Aufeinan-
derfolgenden Profilingaufrufen, zwischen denen kein weiterer Programmcode steht.
Prinzipiell ist diese eine Messung nicht ausreichend, um den verursachten Fehler
genau herauszurechenen. Es müßte auch der durch einen verschachtelten Aufruf der
Profilingfunktionen verursachte Fehler gemessen werden. Für die Angabe einer Grö-
ßenordnung reicht es jedoch aus. Der wirkliche Fehler kann doppelt so groß sein,
wie der geschätzte. Die korrigierte Messung wird also immer noch zu viele Zyklen
anzeigen.

Die Messung der Performance wurde zunächst auf den Entwicklungsplattformen Sun
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Algorithmus Zyklen

Radix-2 20815
Radix-4 13228

Tabelle 2: Angabe der Zyklenzahlen für 1024 Punkte FFT’s von TI (ohne reversal, 16
Bit integer)

und Linux durchgeführt. Dort zeigte sich vor allem die Relation der Geschwindig-
keiten von den Funktionen zueinander. Da die Simulationszeit für 10 Symbole DAB-
Signal bei etwa 8 Stunden lag, fanden Optimierungen und Debugging ausschließlich
auf den Entwicklungsplattformen statt. Optimierungen wurden dabei vornehmlich
auf algorithmischer Ebene durchgeführt. Es ist sicher noch Spielraum für Verbesse-
rungen vorhanden. Dies bezieht sich zum einen auf die Betrachtung der Befehlsebene
von C, zum anderen könnte man direkt für die Zielplattform optimieren und dabei
auf Assemblerebene wechseln.

Der erzeugte Assemblercode ist einsehbar. Es zeigt sich, daß der Compiler gut op-
timierten sequentiellen Code erzeugt. Der Parallelitätsgrad ist jedoch durchgehend
gering und liegt bei ca. 1,5 Befehlen pro Zyklus. Der maximale Parallelitätsgrad der
Zielplattform liegt bei 8. Bei handoptimiertem Assemblercode liegt der Parallelitäts-
grad bei bis zu 6,3 Befehlen, wie sich aus Beispielen von Texas Instruments ablesen
läßt. Daraus läßt sich absehen, daß ein theoretischer Speed-Up mit dem Faktor 4
durch eine bessere Ausnutzung des Prozessors noch möglich ist. In der Praxis wird
man nur die innersten Schleifen und die aufwendigsten Algorithmen per Hand op-
timieren. Aus den Benchmarks ergibt sich, daß auch hier noch ein Speed-Up von
Faktor 3 zu erwarten ist.

Auffällig bei den Benchmarks ist die herausragende Position der Fouriertransfor-
mation. Sie zeigt sich auch nach allen Verbesserungsversuchen als bestimmendes
Element der Performance des gesamten Algorithmus. Es wurden deshalb auch meh-
rere Versuche unternommen, diese Funktion zu optimieren. Die FFT ist jedoch aus
algorithmischer Sicht eine tief geschachtelte, relativ kurze, mathematische Funkti-
on. Versuche, die Berechnungszeit auf dieser Ebene zu beschleunigen, erreichen einen
Speed-Up von beispielsweise Faktor 1,5 für den Einsatz einer Radix-4 FFT. Wie be-
reits beschrieben, läßt sich ein wesentlich größerer Speed-Up durch Parallelisierung
und spezielle Hardwareanpassung auf Assemblerebene erreichen. Um eine Abschät-
zung für eine handoptimierte FFT-Routine angeben zu können, wurden Beispiele
von Texas-Instruments verwendet.

Texas Instruments hat selber hochoptimierten Assemblercode für eine FFT zur Ver-
fügung gestellt. Mit diesem läßt sich abschätzen, wieviel Zeit für die FFT auf dieser
speziellen Plattform veranschlagt werden muß. Die Zyklenzahlen wurden für die
Radix-4 FFT überprüft. Eine Fehlermessung ist jedoch nicht erfolgt. Für die 2048
Punkte FFT des Mode 1 läßt sich eine minimale Zyklenzahl für einen Mix-Radix-
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Algorithmus calls Zyklen/call Zyklen

<overhead> 1 241 241
<conv_punct> 19 10942 207905
<ifft> 11 683811 7521921
<mst symbol> 7 85897 601281
<fic symbol> 3 61236 183708
<interleaver> 9 20226 182038
<time config> 1 110679 110679
<symbols complete> 11 1085831 11944141
<crc_calc> 8 9229 73834
<dqpsk> 10 36438 364380
<fft reversal> 11 289116 3180276

Tabelle 3: Tabelle mit den Zyklenzahlen, wie sie von dem Profilingmodul der COFDM-
Bibliothek ausgegeben werden.

Algorithmus von ca. 34000 Zyklen veranschlagen. Nimmt man den den Radix-2 Al-
gorithmus als Basis, sind etwa 40000 Zyklen zu veranschlagen. Die innerste Schleife
des Algorithmus hat eine Länge von 4 Zyklen. Sollten Veränderungen am Algorith-
mus nötig sein, ist eine eventuelle Verdopplung der Zyklenzahl nicht auszuschließen.
In diesem Fall läßt sich die Zyklenzahl mit 80000 Zyklen angeben. Zusammenfas-
send läßt sich sagen, daß für eine Fouriertransformation im Mode 1 nicht mehr als
100000Zyklen veranschlagt werden müssen. Mit dieser Aussage läßt sich das Ergeb-
nis des Benchmarks neu bewerten.

Anhand der Benchmarks läßt sich ausrechnen, daß für den Algorithmus ohne FFT
etwa 100000 Zyklen im Worst-Case benötigt werden. Zusammen mit der FFT wer-
den also 200000 Zyklen benötigt, was einer Zeit von 1 ms für ein Worst-Case Symbol
entspricht. Das entspricht hochgerechnet 77ms für die Berechnung aller 77 Symbole
eines DAB-Rahmens. Es darf also gesagt werden, daß es technisch möglich ist, den
COFDM-Encoder auf einem TMS320C6201 in Echtzeit zu implementieren! Die ver-
bleibende Zeit von maximal 19ms reicht jedoch nach dem jetzigen Stand der Arbeit
nicht mehr für den Reed-Solomon-Dekoder aus. Mit den Aussagen über die ver-
bliebenen Optimierungsmöglichkeiten darf man jedoch optimistisch sein, daß nach
einer Beschleunigung der Kernroutinen auch diesem genug Zeit zur Verfügung ge-
stellt werden kann.

In der Tabelle 3 sind die wichtigsten Funktionen mit ihren Zyklenzahlen angegeben.

In Kapitel 5.10 wurde darauf hingewiesen, daß sich das FFT-Reversal unter be-
stimmten Bedingungen mit dem Frequenzinterleaver zusammenfassen läßt. Dadurch
kann diese Funktion völlig entfallen. Es wird davon ausgegangen, daß diese Zusam-
menfassung stattfindet, sobald ein endgültiger FFT-Algorithmus gefunden worden
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ist. Diese Funktion wurde deshalb nicht hinsichtlich der Geschwindigkeit optimiert.

Für die Zyklen eines DAB-Rahmens in Mode 1 sind zu rechnen: 3 FIC-Symbole, 72
MST-Symbole, ein Null- und ein TFPR-Symbol, entsprechend 77 IFFT’s, 4 CRC’s
für die ETI-Header, 4 CRC’s für den ETI-Body, eine Rekonfiguration und insge-
sammt 36 Reed-Solomon-Codes. Besonders IFFT und RS-Code verbrauchen die
meiste Rechenzeit. Die Benchmarks sind mit den geschwindigkeitsoptimierten Algo-
rithmen auf dem Simulator durchgeführt worden. Verbesserungen können sich noch
durch die nächste Generation des Compilers ergeben.

6.3 Speicheranalyse

Modul Speicherplatz (Bytes)

Convolutional Coder 2240
Protectionlevel Tabellen 750
CRC 512
IFFT 10240
ETI-Demuxer 512
TFPR-Symbol Generator 218
TII-Symbol Generator 76
OFDM Generator 5120
Reed-Solomon 512
Symbol Control 408
Time Interleaver 52096
Time Configuration 3460
Time Symbol 21248
4x ETI 24576
printtools* 200
profile* 1000

Größe des EXE-Files 201080

Tabelle 4: Tabelle mit dem Speicherverbrauch der einzelnen Module für den
TMS320C6201

Die Algorithmen sind überwiegend auf Rechenzeit optimiert. Der von den Al-
gorithmen benötigte Speicher ist in Tabelle 4 wiedergegeben. Der Speicherplatz ist
dabei jedesmal auf den größten Bedarf im Mode 1 ausgelegt. Dadurch wird im
gesammten Programm keine dynamische Speichervergabe benötigt. Die Algorith-
men lassen sich auch hinsichtlich des Speicherverbrauchs optimieren, es lassen sich
jedoch nur geringe Mengen sparen. Das Gros des Speichers benötigt der Time In-
terleaver. Dieser Speicher läßt sich nicht weiter reduzieren. Das gleiche gilt für den
Platz, den das Symbol im Zeitbereich benötigt (Time Symbol) und den Platz für die
ETI-Eingabedaten. Der IFFT-Algorithmus benötigt für die Tabelle mit den Twidd-
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lefaktoren den nächstgrößeren Speicherblock. In der Tabelle sind 5/4 der Periode
einer Sinusschwingung abgespeichert. Aufgrund der enthaltenen Symmetrien läßt
sich hier der Speicher prinzipiell noch auf 1/4 reduzieren. Die IFFT ist jedoch auch
einer der aufwendigsten Algorithmen. Zusätzliche Operationen können hier die Re-
chenzeit empfindlich in die Höhe treiben. Alle anderen Module benötigen dazu nur
geringe Mengen an Speicher. Es lassen sich zusammen ungefähr 10KByte einsparen.
In der Größe des Executables sind Heap, Stack, Code und Daten mit berücksichtigt.
An der Rechnung fehlt allerdings noch ein Speicherbereich für I/O-Buffering, der
für die Benchmarks nicht benötigt wurde. Ein Speed-Up der Algorithmen ist erst
möglich, wenn deutlich mehr Speicher zur Verfügung gestellt wird.

Der TMS320C6201 ist mit 2x64KByte Speicher ausgerüstet, einmal für den Code,
das andere mal für Daten. Dieser Speicher reicht nicht für den COFDM-Modulator
aus. In dieser Version muß der Prozessor auf externen Speicher zurückgreifen, der
jedoch zusätzlich Wartezyklen erzeugt. Es sind jedoch auch Versionen des Prozes-
sors geplant, die mehr Speicherplatz besitzen. Mit der doppelten Menge an Speicher
könnte man auskommen.
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7 Zusammenfassung/Ausblick

Im Rahmen der Diplomarbeit ist eine COFDM-Modulatorsoftware in der Program-
miersprache C entwickelt worden. Die grundsätzliche Funktion wurde durch den
Vergleich mit anderen Lösungen gezeigt. Auf vollständige Fehlerprotokolle wurde
jedoch verzichtet, da dies nicht Hauptziel der weiteren Entwicklung sein sollte.

Bei der Erstellung der Software wurde Wert auf Modularisierung gelegt. Einzelne
Komponenten sind leicht austauschbar. Im Rahmen der Optimierung sind Module
neu geschrieben worden. Hierbei wurde das Konzept getestet, ob es die Anforde-
rung der dynamischen Entwicklung erfüllt. Weiterhin wurden hardwareabhängige
FFT-Module eingebunden, um den nächsten Schritt zur Anpassung an eine speziel-
le Hardware zu demonstrieren.

Für die Ausgangsdaten ist eine Genauigkeit von 12 Bit seitens Bosch gefordert wor-
den. Daraus ergibt sich die Wortbreite, mit der die Algorithmen berechnet werden
müssen. In der Arbeit ist gezeigt worden, daß 15 Bit Genauigkeit zur Berechnung
der FFT ausreichend sind.

Die erstellten Algorithmen sind auf die Zielplattform des TMS320C6201 übertra-
gen worden. Dort wurden Untersuchungen zur Laufzeit und zum Speicherverbrauch
durchgeführt. Hinsichtlich der Geschwindigkeit läßt sich sagen, daß die Kernrouti-
nen des COFDM-Modulators in Echtzeit ausgeführt werden können. Dazu bedarf
es lediglich einer Anpassung der FFT in Assembler. Um noch zusätzliche Aufgaben,
wie die Netzwerkadaption zu bewältigen, müssen weitere Teile des Programms durch
Assemblerroutinen ersetzt werden.

Um aus dem Konzept ein voll einsetzbares Produkt zu entwickeln, müssen die
noch unvollständigen Module für die Netzwerkadaption ergänzt werden. Ebenfalls
soll noch eine lineare Vorverzerrung im Frequenzbereich implementiert werden. Der
Assembler-FFT-Algorithmus muß in einen “dezimation in time”-Algorithmus um-
geschrieben und an das Blockgleitkommaverfahren angepaßt werden. Letztendlich
müssen I/O-Routinen für die Ein- und Ausgabe und Synchronisation auf der Ziel-
plattform erstellt werden.
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